
Reaction-Diffusion Spatial Modeling of COVID-19 in Chicago

Trent Gerew, Illinois Institute of Technology∗

Fall 2021 SoReMo Fellowship Project Final Technical Report

Contents
Abstract 1

Introduction 1

Materials and Methods 2

Results 4

Discussion 7

License 9

Appendix 9

Abstract
We investigate whether a reaction-diffusion model considering only meanly daily movement is sufficient to
describe the spread of the COVID-19 virus in Chicago. The model is calibrated using publicly available
health data published by the city. We first study the system of partial differential equations, then derive
the basic reproduction number R0. Then we consider the numerical simulations conducted from March 18
to June 24, 2020. These simulations show that this model may not be sufficient to describe COVID-19 in
Chicago. Finally, we discuss shortcomings of the model, and offer some potential solutions.

Introduction
Emerging from Wuhan, China in late 2019, the COVID-19 virus rapidly spread throughout the globe [World
Health Organization, 2020]. Since the outbreak, governments have been trying to contain the pandemic. Now,
with safe and effective vaccines being distributed, it is hoped the pandemic can be overcome [Centers for
Disease Control and Prevention, 2021]. Before the introduction of the vaccines, so-called “non-therapeutic’ ’
interventions [World Heath Organization, 2006] were frequently deployed. Prominent among these are social
distancing, self quarantining, lockdowns, gathering limitations, and the use of personal protective equipment.
Now with the Omicron variant on the rise [Stobbe, 2021], these interventions are once again becoming
prominent with some European countries reintroducing lockdowns and travel restrictions [Meyer, 2021].

Many mathematical models have been proposed to study the spread of the virus. Most are compartment
models, where a population is divided into groups according to the state of individuals. These are generally
known as SIR (susceptible-infected-removed) type models. The majority of such models ignore any spatial
components. [Aràndiga et al., 2020] employs a SAIR (asymptomatic) model and includes mobility terms
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based on the position of cell phones to model the propagation of the disease through Spain. Similarly, [Danon
et al., 2020] incorporates daily movements into an SEIR (exposed) model. In a different approach, [Giuliani
et al., 2020] considers a statistical model to handle diffusion of COVID-19 in Italy.

The goal of our model is to strike a reasonable balance between representation of the pandemic and the
populations involved, and feasibility of data collection and computation.

To do this, we follow [Kevrekidis et al., 2021] and [Mammeri, 2020] in building a virus model where the
spatial propagation is modeled by a diffusion and the reactions are derived from an SAIR model. Specifically,
we examine the spread of COVID-19 in the city of Chicago. Does a reaction-diffusion model, which considers
only the average daily movements of the population, correctly describe the spread of the virus in Chicago? If
it does, we can use the model to assess possible vaccination strategies or reopening scenarios.

A successful model can also be used to examine how social and economic disparities play a role in the
transmission of COVID-19. One can merge race, income, or health-care accessibility data from the Chicago
area with the results from the model to ask and hopefully answer questions like the following: Does community
structure play a role? How effective are vaccines? (Or what is thwarting them?) Are care facilities properly
allocated?

The paper is organized as follows. Section 3 outlines the methodology, including data collection, modeling
assumptions, and parameter estimates. Section 4 contains a brief analysis of the model and the results. In
Section 5, we offer a discussion of the shortcomings of the model, and how they can be improved.

Materials and Methods
Confirmed and Death Data
In this study, we used the publicly available data sets of COVID-19 metrics provided by the City of
Chicago Data Portal. [City of Chicago, 2021a] includes daily counts of city-wide confirmed infected cases,
hospitalizations, and deaths. Weekly cases, tests and deaths by ZIP code are logged in [City of Chicago,
2021b].

Mathematical Model
We focus our study on four components of the epidemic flow (Figure 1). That is, the populations of Susceptible
individuals (S), Asymptomatic infected individuals (A), symptomatic Infected individuals (I), and Removed
individuals (R).

S

A

I

R

ω(βAA
+ βII)

δ

γA
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Figure 1: Compartmental representation of the SAIR model

Our model is known as the SAIR model [Aràndiga et al., 2020], which substitutes the E compartment of the
SEIR model by the A compartment. This model is relevant when there are many undetected asymptomatic
infectious individuals, which is known to be the case for COVID-19.

A few notes motivating this very simple model are necessary.

• We do not consider the “exposed” E group in this work. Because the members of A have separate
infection and recovery rates, and because there is a possibility they are detected and move to I, we
consider E to be merged with A.
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• We do not distinguish between quarantined, incarcerated, hospitalized, or nursing home populations.
Nursing homes are now known to be epicenters of the virus, however the true case rates are notoriously
difficult to track [Grimm, 2021]. Additionally, these four population groups can be assumed to be
stationary in nature, and in the case of quarantined and hospitalized, isolated. Therefore we ignore
their individual contributions.

• In general, the way in which data has been collected and is provided by authorities has varied over time,
making its usage rather difficult1. There is also the question of case counts being influenced by access to
testing, especially early in the pandemic. Including additional compartments would over-parameterize
the model making it more difficult to verify, and would not provide useful information.

• Lastly, adding additional compartments and parameters reduces the computational feasibility of the
optimization problem.

To build the mathematical model, we followed the standard strategy developed in the literature concerning
SIR models [Edelstein-Keshet, 2005]. We assume that individuals in S can be infected by both members of A
and I. We suppose that the individuals in the A and I compartments may have different contact rates βA

and βI , and different recovery rates γA and γI . Furthermore, we consider a rate δ at which individuals in A
may develop symptoms or are otherwise detected and so will move to the I compartment. Lastly, we assume
that only members of S and A are mobile.

The average number of contacts ω is described in Equation 2. The diffusion coefficient D is assumed to be
the same for both A and I, and is defined by Equation 4.

The dynamics is governed by a system of two partial differential equations (PDE) and two ordinary differential
equations (ODE) as follows, for x = (x, y) ∈ Ω ⊂ R2, t > 0,

St − D(t)∆S = −ω(t) (βAA + βII) S,

At − D(t)∆A = ω(t) (βAA + βII) S − (γA − δ)A,

It = −γII + δA,

Rt = γAA + γI .

(1)

Since travel into the city of Chicago was heavily restricted for the early stages of the pandemic, the
homogeneous Neumann boundary condition is imposed [Mammeri, 2020]. The population compartments are
considered fractions, such that S + A + I + R = 1.

Parameter Estimation
To account for the lockdown, the average number of of contacts is updated as in [Kevrekidis et al., 2021]

ω(t) = ω0

[
η + (1 − η)1 − tanh [2(t − tq)]

2

]
. (2)

Here, tq = (teol + tbol)/5, where bol denotes the beginning of the lockdown and eol denotes the end of the
lockdown. The parameter 0 ≤ η ≤ 1 is a varying coefficient translating respect for social distancing and other
preventative measures. Note that ω0 is the average number of contacts before any intervention, and is a
constant.

The parameters ω0, βA, and βI are not independently identifiable, so the optimization problem reduces to five
parameters θ = (ω0βA, ω0βI , δ, γA, γI). Given the observations Iobs(ti) over n days, we have the minimization
problem

1For an in-depth analysis of the data collection problem, see [Simon, 2021], [Schechtman and Simon, 2021], [Achenbach and
Abutaleb, 2021], [Badker et al., 2021]
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min
θ

n∑
i=1

[Iobs(ti) − I(ti)]2

s.t. 0 ≤ θ ≤ 1
(3)

I(ti) denotes the output of the mathematical model at time ti computed with parameters θ.

The optimization problem is solved using the MATLAB nonlinear optimization function fmincon. The initial
parameter guesses to seed fmincon were randomly sampled from a uniform distribution over 1000 iterations.
The median of each resulting parameter was selected. Figure 3 shows the estimated parameters.

The diffusion coefficient is also assumed to be altered by the lockdown, and is updated as a simple step
function

D(t) = D0 [1 − (1 − η)H(t − tbol)] (4)

where H(t) is the Heaviside step function. The average one-way commute in Chicago is about 5 miles [tra,
2016]. Thus we set the diffusion coefficient D0 to the fixed value of 5/0.72 to convert to the spacing used for
the discretization.

Numerical Discretization
From the map of the city, the computational domain Ω is defined as the minimum square enclosing the
city. The city is contained by Ω′ = {(X, Y ) | X ∈ [−87.9397, −87.5245], Y ∈ [41.6447, 42.023]} where X
represents degrees latitude and Y represents degrees longitude. Note that degrees latitude and longitude
are not equal when converted to miles. Therefore, we define the computational domain such that the grid
spacing is approximately 0.72 miles in both axes. This gives the domain

Ω =
{

x ∈ R2 | x ∈ [0, 40], y ∈ [0, 29]
}

. (5)

The initial spatial distribution of the infected population is determined by sampling the ZIP code data of
confirmed cases [City of Chicago, 2021b] at the grid points, as shown in Figure 2.

The model is solved via finite differences, using the scikit-fdiff Python module [Cellier and Ruyer-Quil,
2019]. It is important to note that due to the limitations of the solver, the simulation had to be broken into
time blocks where the values of ω(t)βA, ω(t)βI , and D(t) are evaluated for the initial time in each block and
held constant.

Results
Existence of Solutions and Basic Reproduction Numbers
We show that we are justified in searching for suitable parameters to solve the model. Let x = (S, A, I, R)⊺
and x0 = (S0, A0, I0, R0)⊺. First we show that the solution of the initial value problem 1 exists for the case
with no diffusion.

Theorem 1. Let 0 ≤ x0 ≤ 1 be the initial datum. Then there exists a unique in time solution x of the initial
value problem 1 without diffusion over C ⊂ U ⊂ R4 × R1 where C is a compact set that contains (x0, t0).
Moreover, the solution is C1.

Proof. Since xt = f(x, t) is C1 on the open set U ⊂ R4 × R1, it follows that there exists a solution of 1
without diffusion through the point x0 at t = t0 for |t − t0| sufficiently small. Moreover, x(t, t0, x0) is a
C1 function [@dynamics]. Since C is a compact set containing (x0, t0), then the solution x(t, t0, x0) can be
uniquely extended backward and forward in t up to the boundary of C [@dynamics].
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Figure 2: Top: ZIP data. Bottom: Initial seeding of the model with data from March 18, 2020.
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We do not provide a proof for the existence of solutions to the initial boundary value problem 1 with diffusion
terms, but we assume it exists.

Conjecture 1. Let 0 ≤ x0 ≤ 1 the initial datum. Then there exists a unique global in time solution x of the
initial boundary value problem 1.

A proof for this conjecture will be similar to the one given in [Mammeri, 2020]. An important parameter in
understanding the initial growth of the virus is the basic reproduction number.

Definition 1 ("Basic Reproduction Number"). The basic reproduction number R0 can be computed using the
next generation of the model without diffusion. Since the infected individuals are in A and I, new infections
(F) and transitions between compartments (V) can be rewritten as

F =
(

ω(βAA + βII)S
0

)
, V =

(
(γA + δ)A
γI − δA

)
.

Then F and V are the Jacobians of F and V respectively evaluated at the disease free equilibrium. Thus,
R0 = ρ(FV−1) of the next generation matrix

FV−1 =
( S0ω0βA

γA+δ + S0ω0βI δ
γI (γA+δ)

S0ω0βI

γI

0 0

)
.

So,

R0 = S0ω0

γA + δ

(
βA + βI

δ

γI

)
.

This number is dimensionless and has an epidemiological meaning. The first term represents the transmission
rate by asymptomatic individuals, and the second term represents the transmission rate by symptomatic
individuals.

Model Resolution
Calibration of the model is done from March 18, 2020 to June 24, 2020. This range corresponds approximately
to the first “wave” of cases seen in Chicago. The lockdown time points match exactly to the imposed lockdown
of the city. That is, tbol = March 21, 2020 and teol = May 29, 2020. In Figure 3, the table shows the
estimated parameters. Figure 4 compares the data and the fitted symptomatic infected populations.

Figure 3: Parameters calibrated according to data from the Chicago Data Portal. On the right is a boxplot
of the parameter distribution from 1000 optimization iterations.

Spatial Spread of COVID-19
Simulations are performed from March 18, 2020 to June 24, 2020. The time step is ∆t = 0.2 [days], chosen to
satisfy the convergence condition [Strauss, 2008].
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Figure 4: PFitting symptomatic infected by the median value. Note the logarithmic scale on the y-axis.

Figure 5 presents three of the days from the simulation time: the effective lockdown tq day, the last day of
simulation, and arbitrary day from the period in between. The observed data is shown on the left, while the
model results are on the right. Comparing the model results to the data, we see that the model’s diffusion
mostly misses the diseases west-ward movement between days 15 and 35. Additionally, the model shows
significantly fewer cases than are seen in the data (note the difference in the scale of the colorbars).

In short, this model does not produce a reasonable reproduction of the spatial spread of COVID-19.

Discussion
As mentioned in the previous section, the proposed model does not reproduce the spatial propagation of the
virus. In this section, we address possible causes of these inaccuracies and discuss proposals for improving
the results.

The selected model populations may not, contrary to the assumption, be sufficient to describe the virus
dynamics. Figure 4 suggests this conclusion, since the growth of the model population only roughly describes
the observed data. Note that after Day 20, the model and data begin to diverge substantially. This seems
to correspond to the discrepancy in the number of cases seen in the spatial results in Figure 5. Likely, the
Exposed compartment describing the latent period is necessary, as in [Mammeri, 2020]. It is possible that the
assumption that Deceased and Recovered populations can be modeled by the same population compartment
is errant. On the other hand, in either case these populations have no effect on the act of transmission, so
the model dynamics would likely be similar for both cases. A Deceased population may be useful for other
reasons, as discussed below.

The boundaries imposed on the computational domain (Equation 5) are likely not sufficient to force the
diffusion process to replicate the true virus propagation. Figure 6 shows the S and A populations at the same
time points. There is a notable amount of diffusion of the S population out of the boundaries of the city,
including into Lake Michigan. Since the S population diffuses into areas not reachable by the I population,
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Figure 5: Comparison of observed infected cases and the model results.
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the reaction rates as described in Equation 1 are small. This may also explain the differences in case numbers
seen in Figure 5. It seems a tightening of the bounds of the computational domain is in order. Ideally, we
would define the computational domain to be exactly the boundaries of the city. In practice, however, this is
infeasible due to the irregularities of the shape. A better alternative is to define a polygon that approximates
the shape of the city to be the computational domain. In any case, a new solver will be needed as the
scikit-fdiff module only allows rectangular domains.

The optimization method can be improved in two ways. First, by adding a Deceased population we can
modify the objective function (Equation 3) to compare both cases and deaths, as in [Kevrekidis et al.,
2021]. COVID-19 death data is readily available, though requires caution to work with due to reporting
inconsistencies. Second, we can perform the optimization directly on the spatial model, as in [Mammeri,
2020], rather than relying on parameters from a temporal-only model.

License
The author of this technical report, which was written as a deliverable for a SoReMo project, retains the
copyright of the written material herein upon publication of this document in SoReMo Reports.

Appendix
Nomenclature (Units are indicated in brackets.)

Latin Symbols
A Asymptomatic infected individuals [1]
D Diffusivity
F Rate of appearance of new infections [days−1]
F Jacobian of F evaluated at the disease-free equilibrium N/A
I Symptomatic infected individuals [1]
R Removed individuals [1]
R0 Basic reproduction number [1]
S Susceptible individuals [1]
V Rate of transfer of individuals [days−1]
V Jacobian of V evaluated at the disease-free equilibrium N/A

Greek Symbols
βj Contact rate of compartment j [days−1]
γj Recovery rate of compartment j [days−1]
∆ Laplacian operator N/A
δ Rate of asymptomatic individuals that may

develop symptoms
[days−1]

η Lockdown scale factor [1]
θ Parameter vector N/A
ρ Spectral radius N/A
Ω Computational domain N/A
ω Contacts [1]

Model Populations
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Figure 6: Model results for susceptible and asymptomatic populations.
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