Effect of the boundary conditions, temporal, and spatial resolution on the pressure from PIV for an oscillating flow

Authors

  • Nazmus Sakib Utah State University
  • Alexander Mychkovsky Naval Nuclear Laboratory
  • James Wiswall Naval Nuclear Laboratory
  • Randy Samaroo Naval Nuclear Laboratory
  • Barton Smith Utah State University

DOI:

https://doi.org/10.18409/ispiv.v1i1.40

Keywords:

Pressure from PIV, Pressure Poisson

Abstract

The pressure field of an impinging synthetic jet has been computed from time-resolved, three-dimensional, three-component (3D-3C) particle image velocimetry (PIV) velocity field data using a Poisson equationbased pressure solver. The pressure solver used in this work can take advantage of the temporal derivative of the pressure to enhance the temporal coherence of the calculated pressure field for time-resolved velocity data. The reconstructed pressure field shows sensitivity to the implementation of the boundary conditions, as well as to the spatial and temporal resolution of the PIV data. The pressure from a 3D Poisson solver that does not consider the temporal derivative of the pressure shows high random error. Invoking the temporal derivative of the pressure eliminates this high-frequency noise, however, the calculated pressure exhibits an unphysical temporal drift. This temporal drift is affected by both the temporal resolution of the PIV data and the spatial resolution of the PIV vector field, which was systematically evaluated by downsampling the instantaneous data and increasing the interrogation window size. It was observed that decreasing the temporal resolution increased the drift, while decreasing the spatial resolution decreased the drift.

Downloads

Published

2021-08-01

Issue

Section

Pressure and Force