Pressure reconstruction of a planar turbulent flow field within a multiply-connected domain with arbitrary boundary shapes

Authors

  • Xiaofeng Liu San Diego State University, United States of America
  • Jose Roberto Moreto San Diego State University, United States of America

DOI:

https://doi.org/10.18409/ispiv.v1i1.180

Keywords:

Pressure reconstruction, multiply-connected domain

Abstract

Over the past two decades, it has been demonstrated that the instantaneous spatial pressure distribution in a turbulent flow field can be reconstructed from the pressure gradient field non-intrusively measured by Particle Image Velocimetry (PIV). Representative pressure reconstruction methods include the omnidirectional integration (Liu and Katz, 2006; Liu et al., 2016; Liu and Moreto, 2020), the Poisson equation approach (Violato et al., 2011; De Kat and Van Oudheusden, 2012), the least-square method (Jeon et al., 2015), and most recently, the adjoint-based sequential data assimilation method, which also essentially utilizes the Poisson equation to reconstruct the pressure(He et al., 2020). Most of these previous pressure reconstruction examples, however, were applied to simply-connected domains (Gluzman et al., 2017) only. None of these previous studies have discussed how to apply the pressure reconstruction procedures to a multiply-connected domain (Gluzman et al., 2017). To fill in this gap, this paper presents a detailed report for the first time documenting the implementation procedures and validation results for pressure reconstruction of a planar turbulent flow field within a multiply-connected domain that has arbitrary inner and outer boundary shapes. The pressure reconstruction algorithm used in the current study is the rotating parallelray omni-directional integration algorithm, which, as demonstrated in reference (Liu and Moreto, 2020) based on simply-connected flow domains, offers high-level of accuracy in the reconstructed pressure. While preserving the nature and advantage of the parallel ray omni-directional pressure reconstruction at places with flow data, the new implementation of the algorithm is capable of processing an arbitrary number of inner void areas with arbitrary boundary shapes. Validation of the multiply-connected domain pressure reconstruction code is conducted using the DNS (Direct Numerical Simulation) isotropic turbulence field available at the Johns Hopkins Turbulence Databases, with 1000 statistically independent pressure gradient field realizations embedded with random noise used to gauge the code performance. For further validation, the code is also applied for pressure reconstruction from the DNS pressure gradient in the ambient flow field of a shock-induced non-spherical bubble collapse in water (Johnsen and Colonius, 2009). The successful implementation of the parallel ray pressure reconstruction method to multiply-connected domains paves the way for a variety of important applications including, for example, experimental characterization of pressure field changes during the process of cavitation bubble inception, growth and collapse, non-intrusive unsteady aerodynamic force assessment for an arbitrary body shape immersed in flows, and multi-phase flow investigations, etc. In particular, as an immediate follow-up effort, the parallel ray pressure code will be used for the instantaneous pressure distribution reconstruction of the turbulent flow surrounding cavitation inception bubbles occurring on top of a cavity trailing corner based on high-speed PIV measurements.

Downloads

Published

2021-08-01

Issue

Section

Pressure and Force