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Abstract 

Non-invasive flow velocity measurement techniques like volumetric Particle Image Velocimetry (PIV) 

(Elsinga et al., 2006; Adrian and Westerweel, 2011) and Particle Tracking Velocimetry (PTV) (Maas, 

Gruen and Papantoniou, 1993) use multi-camera projections of tracer particle motion to resolve three-

dimensional flow structures. A key step in the measurement chain involves reconstructing the 3D intensity 

field (PIV) or particle positions (PTV) given the projected images and known camera correspondence. Due 

to limited number of camera-views the projected particle images are non-unique making the inverse 

problem of volumetric reconstruction underdetermined. Moreover, higher particle concentration (>0.05 ppp) 

increases erroneous reconstructions or “ghost” particles and decreases reconstruction accuracy. Current 

reconstruction methods either use voxel-based representation for intensity reconstruction (e.g. MART 

(Elsinga et al., 2006)) or a particle-based approach (e.g. IPR (Wieneke, 2013)) for 3D position estimation. 

The former method is computationally intensive and has a lesser positional accuracy due to stretched shape 

of the reconstructed particle along the line of sight. The latter compromises triangulation accuracy (Maas, 

Gruen and Papantoniou, 1993) due to overlapping particle images for higher particle concentrations. Thus, 

each method has its own challenges and the error in 3D reconstruction significantly affects the accuracy of 

the velocity measurement. Though, other methods like maximum-a-posteriori (MAP) estimation have been 

previously developed (Levitan and Herman, 1987; Bouman and Sauer, 1996) for computed Tomography 

data, it has not been explored for PIV/ PTV 3D reconstruction. Here, we use a MAP estimation framework 

to model and solve the inverse problem. The cost function is optimized using a stochastic gradient ascent 

(SGA) algorithm. Such an optimization can converge to a better local maximum and also use smaller image 

patches for efficient iterations. 

Our method uses a uniform prior model for the unknown 3d particle positions (𝑥) and a forward model 

(𝑓) of the measurement chain to estimate the posterior distribution. Here, we assume a uniform probability 

distribution, 𝑥𝑖 ∼ 𝑈([𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]) ,  for each of the 𝑁 particle positions within the measurement domain 

bounds, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥. The observations 𝑦1:𝑀 = (𝑦1, … , 𝑦𝑀) are recorded images from M cameras with 

image size 𝑃𝑟 × 𝑃𝑐 pixels. We define the row and column position of a pixel using 𝑟 and 𝑐 respectively. The 

camera calibration function  (ℂ𝑟
𝑚(𝑥),  ℂ𝑐

𝑚(𝑥)) provides the forward mapping from 3D particle space (𝑥1:𝑁) 

to the image pixel coordinates (𝑟, 𝑐) for 𝑚th camera. Thus, the projected pixel intensity using the forward 

model is written as,  
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In equation (1), 𝐼0,  𝜎𝑑  are image parameters estimated from the optical transfer function (OTF) of 

particle images. The likelihood of all observed data conditioned on particle positions is: 
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where, each pixel is considered as an independent observation. Assuming a Log-normal noise the individual 

pixel likelihood is defined as a normal distribution 𝒩(log 𝑦𝑚𝑟𝑐| log 𝑓𝑚𝑟𝑐(𝑥1:𝑁) , 𝜎
2), with noise variance 

𝜎2.The posterior 𝑝(𝑥1:𝑁 | 𝑦1:𝑀) is expressed as a function of the likelihood and the prior and finally, the 

MAP estimate is given by 𝑥𝑀𝐴𝑃 = argmax[log(𝑝(𝑥1:𝑁 | 𝑦1:𝑀)), which we solve using stochastic gradient 

descent. 

This framework was implemented using PyTorch with tensor formulations. The ADAM optimizer was 

used with varying learning rates (0.001 to 0.1) and a polynomial calibration function was used to build the 

forward model. Synthetic PIV images of size 64x64 pixels were generated with varying particle 

concentrations (0.01 to 0.1 ppp) to validate the algorithm. Figure 1a) shows better convergence with 

increasing learning rate. However, the initial results with random initializations show lower particle yield 

across the range of seeding density (Figure 1b)). The RMS error for the valid measurements were close to 

0.2 pixels. The SGA algorithm was also tested with different batch size, and suitable learning rates.  Lower 

batch size showed higher oscillations (Figure 1c)) in mean square loss as smaller random patches from 

different camera images did not contain the projections of the same particles. Subsequently, random image 

patches corresponding to the same sub-volume resulted in better convergence. The reconstructed positions 

for a random initialization tended to get trapped in local minima and to avoid such cases perturbed stochastic 

gradient ascent (PSGA) (Jin et al., 2021) was also implemented. Every 100 iterations if the change in loss 

function was less than 1%, the gradients were perturbed by a zero mean Normal distribution with varying 

standard deviations. The methodology is also tested for triangulation-based initializations and for random 

corresponding patches for each camera image. Furthermore, the sensitivity of the optimization framework 

to different image noise models (e.g., Bernoulli or Poisson distributions) is explored. Finally, we compare 

the current estimation of the reconstruction error with existing methods for a synthetic vortex ring case.   
 

 
Figure 1: Subplot (a) shows algorithm convergence for different learning rate for a whole image optimization. Subplot (b) shows 

RMS error in reconstructed positions for valid measurements and % of valid measurements or particle yield for different particle 

concentrations in particles per pixel (ppp). Subplot (c) shows variation in mean square loss for the cost function for different batch 

size. 
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