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Abstract

This work presents the main results of the firstaDassimilation (DA) challenge, conducted withiretiramework of the
European Union’s Horizon 2020 project HOMER (HatigDptical Metrology for Aero-Elastic Research)agr agreement
number 769237. The challenge was jointly organisgdhe research groups of DLR, ONERA and TU Ddifie same
synthetic test case as in the Lagrangian PartieleKing (LPT) challenge (also presented in thisgysium) was considered,
reproducing the flow in the wake of a cylinder moximity of a flat wall. The participants were prded with three datasets
containing the measured particles locations anid tiagectories identification numbers, at increastracers concentrations
from 0.04 to 1.4 particles/minThe requested outputs were the three componétiie @elocity, the nine components of the
velocity gradient and the static pressure, defimed Cartesian grid at one specific time instahe fiesults were analysed in
terms of errors of the output quantities and tHestributions. Additionally, the performances oéttlifferent DA algorithms
were compared with that of a standard linear irtktpon approach. Although the velocity errors whrend to be in the
same range as those of the linear interpolatioorign, typically between 3% and 12% of the bulkoedy, the use of the
DA algorithms enabled an increase of the measurespatial resolution by a factor between 3 and e €rrors of the
velocity gradient were of the order of 10-15% a fieak vorticity magnitude. Accurate pressure rscantion was achieved
in the flow field, whereas the evaluation of theface pressure revealed more challenging.

1 Introduction

In the recent years, three-dimensional velocity sneaments by Particle Image Velocimetry (PIV) havelved from cross-
correlationbased volume analysis (Elsinga et al., 2006; Scarano, 2012) to tracking of individual particles (Particleabking
Velocimetry, PTV, Malik et al., 1993; Lagrangian Particle Tracking, LPT, Schanz et al., 2016). One of the main adepesa
of the particle tracking approaches lays in thedased measurement spatial resolution, becaudecityéand acceleration)
vector is determined for each and every recongtdupiarticle, without averaging such informationhiita spatial sub-
domain. However, the particle tracking approackés n velocity vectors at the scattered locatiohens the tracer particles
are present. For data reduction purposes, it&afonvenient to map such information onto a reg@artesian) grid, so as
to facilitate the operations required for the cotafion of relevant flow properties such as theieayt the Q- orA.-criteria
for vortex identification and the shear rate, amotigers. Additionally, the evaluation of the prassfield via the direct
integration of the pressure gradient or the sofutibthe Poisson equation for pressure (van Oudleayy2013) is typically
performed on a regular grid, although grid-lessrapphes for the solution of the Poisson equatioe lzsdso been proposed
(Kunhert and Tiwari, 2001). The conventional tecfuas to map scattered flow information onto a raggtid involve the
use of interpolation (usually linear or cubic imelation) or spatial averaging of the particlesioeities and accelerations
over sub-domains or bins (e.g. adaptive Gaussiadawing technique, AGW, Agiii and Jimenez, 1987)weleer, these
approaches suffer from low spatial resolution, lbseaare incapable to resolve flow wavelengths sm#tian the inter-
particle distance or the bin linear size. As a ltesliey lead to spatial modulation of the flowifiend unresolved or under-
resolved length-scales, especially for the studyidfulent flows where a wide range of length-ssédepresent. The use of
prior information on the flow physics, e.g. by ingireg the conservation of mass for incompressiloedlvia application of
a solenoidal filter to the retrieved velocity field (Schiavazzi et al., 2014; Azijli and Dwight, 2015), has been shown as a viable
methodology to attenuate the measurement noisemmahce the accuracy of the measured flow field.eMalvanced data
assimilation approaches have been recently propgoseforce the compliance of the resulting floeldiwith the governing
equations of fluid motion, aiming at increasing thege of length-scales resolved, possibly beybedlitnit of Nyquist
criterion. In the FlowFit algorithm introduced bye&mann et al. (2016), the velocity field is diddeto cubic volumes,
where it is represented as a weighted sum™b@ler 3D base splines. The spline functions asdueted by solving an
optimisation problem, where a cost function is mmisied that imposes physical constraints such asahservation of mass
and momentum for incompressible flows. Alternatamproaches involve the use of vortex methods (Génisen, 1973),
which make use of the vorticity transport equatibone time instant (Schneiders et al., 2016) andwa short time sequence
(Jeon et B, 2018; Scarano et al., 2021; Jeon, 2021) to retrieve a vorticity field compatible with threeasured particles’
velocities and accelerations. Four-dimensional degsimilation has been proposed recently within ftaenework of
variational methods for computational fluid dynas{€handramouli et al., 2020).
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The discussion above highlights the presence diilitode of approaches aiming at combining flow swwaments by LPT
and background information on the flow physicsdourately reconstruct the flow field on a reguladgThe aim of the first
data assimilation challenge, whose main resultspaesented in this work, is to comparatively asgbssdifferent data
assimilation approaches using a database from alati®a experiment, so as to shed light on the dbfied of these
approaches and on which parameters and error Soase the largest influence on their performance.

2 Databasedescription

The database used for the Data Assimilation chgdlés described in detail in the contribution froeclaire et al. (2021),
also presented at the ISPIV 2021. For sake of cet@pess, a short description of the database @&stegbhereafter. The
database contains the particles’ velocities frosyrathetic experiment on a wall-bounded wake flowibe a cylinder. The
cylinder had a diameter D = 0.01 m, and was locat€ll01 m distance from the wall. The fluid usedhie simulations was
air, but scaling was applied to simulate an expeniin water at a bulk velocity &f, = 0.667 m/s, yielding a turbulent
boundary layer of thickness~ 60 mm and a momentum thickness Reynolds humbRest 4,500. The flow domain for
the DA challenge was the same as the one usecihRA challenge (Sciacchitano et al., 2021), ardl dimmensions of
0.1 mx0.05 mx0.03 m (AX x AY x AZ, being X, Y and Z the streamwise, spanwise ant-weamal directions
respectivelysee Figure 1).
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Figure 1:Side view (left) and top view (right) of the flowothain. The dashed rectangle indicates the domaid fas the DA challenge.
Iso-contours of the instantaneous streamwise glooimponent are showthe flow is in the positivX direction. The origin of the system
of axes used for the DA challenge is indicated @t the figure.

The particles’ positions in 3D space and theiretigries identification numbers were provided te farticipants for a
sequence of 50 equally-spaced time instants at simparatiom\t = 600 um. The particles’ positions were affected by a
0.1 back-projected pixebx random error (information not disclosed to thetipgants). The database comprised three
different datasets at increasing tracer partictesentrations, as reported in Table 1.

Table 1:Main parameters of the datasets composing the Dabdae.

Dataset Equivalent  # of particles in the Particles Average inter- Normalised inter-
# pppt fluid domain concentration particle spacing particle spacing
C [particles/mr ¢ [mm] t/h
1 0.005 6,422 0.043 1.61 4.0
2 0.025 31,847 0.212 0.94 2.3
3 0.160 204,280 1.362 0.52 1.3

The participants were requested to provide 13 dupantities on a Cartesian grid of spading 0.4 mm composed of 251
grid locations along (from =50 mm to +50 mm), 126 aloivgfrom —25 mm to +25 mm) and 76 aloAdfrom +0.01 mm
to +30.01 mm), for a total of 2,403,576 grid poifitke 13 output quantities were:

- The three components of the velocity vectdr, (Vy, V), in m/s;

- The nine components of the velocity gradient ten§dVvy/0X, dVy/dY , dVy/dZ, aV, /X, dV,/aY ,

oVy/0Z,0V,/dX, 0V,/dY, dV,/0Z)in s

- The static pressumein Pa, relative to the poink( Y, Z) = (0, 0.2, 0.01) mm.
All output quantities were requested at the timstant number 25. The data were analysed in termasrofs of the output
guantities (viz. difference from the actual valtenf the LES simulation at each grid location), thigstributions and spectral
content.

! The equivalent ppp is evaluated considering ahstitt experiment as that of the LPT challenge diesdrin Leclaire et
al. (2021) and Sciacchitano et al. (2021).
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3 Participantsand approaches

Four research groups participated to the DA chglemamely the German Aerospace Centre from GéniflLR), the
Kutateladze Institute of Thermophysics in Russ@&ir(), Delft University of Technology in the Nethamtis (TU Delft, shortly
TUD) and the German instrumentation company LavisgmbH. The approaches employed by these groupbresfty
summarised hereafter. As reported in Table 2, @iffees among the algorithms are already presdheiway the particles’
locations are fitted to retrieve the positionspegies and accelerations at time instent25, which constitute the inputs for
the DA approaches.

Table 2:Types and kernel sizes of the fit used to deterriliegarticles’ positions, velocities and accelerst.

Participant (approach) Track fit type Track fit kernel size

DLR Cubic B-spline Adaptive, based on the spectral
analysis of the particles’ tracks

10T Cubic B-spline Adaptive, based on the spectral
analysis of the particles’ tracks

LaVision (VIC#-3D) Z¢ order polynomial 7/7/9 at ppp = 0.005/0.025/0.160

LaVision (VIC#-4D) Z¢ order polynomial 7/7/9 at ppp = 0.005/0.025/0.160

TUD (VIC+) 2" order polynomial, 3 iterations 9

TUD (TSA) 2 order polynomial, 3 iterations 9

3.1 DLR: FlowFit2
The approach employed by the DLR group is baseiti®irackFit and FlowFit2 algorithms, which are aésed in detail
in Gesemann et al. (2016). The main processing stepthe following:

a) Determination of the particles’ trajectories acéogdo the provided locations and traldi-data;

b) Spectral analysis of the location-over-time signalsstimate the optimal TrackFit parameters

c) TrackFit: estimation of the particle trajectoriesumiform cubic B-splie curves;

d) Sampling of the particle track B-spline functionghee specified time step (namely 25), includingtfand second
derivatives (velocity and accelerationy,input to FlowFit;

e) FlowFit2: non-linear estimation of velocity and gsare fields as 3D uniform cubic B-splines based aeighted
least-square optimisation that minimises the suraevkral squared errors. Those include: the divesmef the
velocity field, the gradient of the divergence lod tvelocity field, deviations between measuredfitedl velocities
and accelerations, deviations from the pressurgsBoiequation, velocity vector Laplacian.

Before the FlowFit2 step, additional virtual pag&with zero velocity and acceleration are gemerat the wall{ = 0 m)
to comply with the no-slip boundary condition.

3.2 10T
The STB algorithm from the OpenLPT project (Tarakt2020) with slight modifications is used by t&T group. The
processing algorithms employed are described ir@oét al. (2021) and consists of four main stages:

a) Track approximation by weighted cubic cardinal Birggs (Gesemann et al., 2016), where the weigltiiradficients
were determined by minimisation of a cost functismg the gradient descent method. The velocityeacdleration
along the tracks were computed via analytical @idwn in time of the Bsplines using previously obtained weights;

b) Calculation of the spatial derivatives of the véjpand acceleration via the least-squares methahainstructured
grid, using the approach proposed by Kuhnert anifi(2001)

c) Calculation of the pressure field via iterativenjosolution of the Navier-Stokes equations andbisson equation
for pressure (Kuhnert and Tiwa2iQ01);

d) Kriging interpolation of the resulting data onte thutput Cartesian grid.

To enhance the accuracy of the estimated pres&ldeat low seeding concentrations, virtual paetcivere inserted into the
flow domain, using kriging interpolation of the uak from the known particles’ positions.

3.3 TUD: VIC+ and TSA

The TU Delft team made use of two approaches, batied on the Vortex-in-Cell method (Christianséd¥,3). The first
approach, named VIC+ (Schneiders and Scarano, 26d4€s a vorticity field defined at the outputt€sian grid such that
a cost function is minimised. The latter dependshendifference between the measured and recotetrvelocities and
Lagrangian accelerations at the particles’ locatidine velocity field is then obtained from theaestructed vorticity field
via the solution of the Poisson equation. The seegproach, named Time-Segment Assimilation (TSAar&ho et al., 2021)
is an evolution of the VIC+ concept which expldhe temporal information from time-resolved meaments. In this case,
the vorticity dynamics equation is used to maratwérd and backward for a finite number of exposiresotal 31 at ppp =
0.005 and 21 at ppp = 0.025) the first guess ofvtiréicity field at timet = 0. The cost function is built as the difference
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between the measured and the reconstructed velaicitye particles’ locations along the entire tisegment. It should be
noted that, due to the high computational cost,TtBA results were only produced for ppp = 0.005 @@®5, and not for
ppp = 0.160. Also, the pressure field was evaluatey for the VIC+ analysis (and not for the TSAalysis), by solving the
Poisson equation for pressure (van Oudheusden)20€i8g Neumann boundary conditions at all boupgaints.

3.4 LaVision: 3D and 4D VIC#

Also LaVision GmbH made use of two approaches, r@hgng only on instantaneous data (3D) and ondoéimy the
information on the time evolution from time-resalveneasurements (4D). The approaches, indicated WiAi#-3D and
VIC#-4D, respectively, are based on an evolutiothefVIC+ algorithm (Schneiders and Scarano, 2@li&re additional
physical constraints on the divergence of velooityticity, Eulerian acceleration, Lagrangian aecation and on the
momentum equation are imposed (Jeon et al.,;2@&8, 2021). A multi-grid approximation was performed so aslecrease
the computational cost due to large number of etesni@ the output Cartesian grid.

4 Results

4.1 Velocity components

The results of the data assimilation algorithms expected to exhibit an increasing uncertainty decreasing seeding
concentration, as a consequence of the largerpateicle distance and therefore lower spatial lrggm. For the lowest
seeding concentration case (ppp = 0.005), FiguenZpares the streamwise velocity component alongrakplanes in the
measurement domain, as well as an iso-surfaceedtbriterion (Q = 80,000% among ground truth (top-left), participants’
results, and linear interpolation of the particlesiocities (bottom right). From the ground trutbv field, the decrease of
the velocity towards the wall (Z = 0) due to thegence of the boundary layer is evident. The flieddfis clearly turbulent,
with small coherent vortical structures visualiséathe Q-criterion mainly in the region X < 0. Thesults of the different
algorithms are overall rather similar to the grotmnuth, in that they correctly reproduce the tudntinature of the boundary
layer and close-to-zero velocity at the wall. Tesult from TUD TSA exhibits more edge effects esgdctowards the lower
limit of Y, where the streamwise velocity componeetreases to unphysical values close to zerolifidar interpolation
result correctly reproduces the main charactessifche flow field, although with a larger spatiabdulation, thus resulting
in smoother velocity contours. However, when thealénaortical structures are compared in terms afdsrfaces of
Q-criterion, it is clear that none of the data msition algorithms (nor the linear interpolatiar)able to correctly capture
those due to the limited spatial resolution of tiasurement.
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Figure 2:Slices of the streamwise velocity component angofsurfaces of Q criterion (Q = 80,006)dor the ppp =0.005 case. The
ground truth flow field from the numerical simulatis is shown on the top-left. The result from tinedr interpolation of the particles
velocities onto the Cartesian grid is shown onbtbgom-right.

A quantitative analysis of the bias and randomrsrod the velocity magnitude as a function of teeding concentration is
conducted in the entire measurement domain exajuglimm (ten grid points) from all the outer edgeavoid edge effects.
Such analysis is presented in Figure 3. The bias @figure 3-left) exhibits little dependence dwe ppp, and it typically
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attains values within 0.5% of the fluid bulk velycV; such errors increase slightly at the lowest ppp, reaching values of 2%

of Vo. The highest errors are encountered with the TIHA &lgorithm, attaining values of up to 4% \&f. Also, it is
remarked that the linear interpolation algorithnelgs similar but slightly larger bias errors to mdata assimilation
algorithms. The random error, illustrated in (FigGrleft), shows the expected decrease with inorgageding concentration.
At the lowest ppp, the random error is between @6 0.085 m/s (or 9% and 13%\Gf), and decreases to about 0.025 m/s
(roughly 4% oiV,,) at the highest ppp. At each seeding concentratimall but systematic differences of about 0.@R20n/s
among the different algorithms are recorded. tioced that the linear interpolation approachdgatandom error values of
the same order as those of the data assimilatgorigims.
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Figure 3:Bias (left) and random (left) error of the veloaiagnitude as a function of the ppp. The symboslkaply to both plots.

To further assess the capabilities of the dataralssion approaches to resolve small scales inflthe field, a spectral
analysis is conducted in a region of the flow danaawvay from the wall, namely for 20 nwZ <30 mm. The average power
spectral density in such region of the wall-normebcity componenY? is illustrated in Figure 4 for the three ppp value
As expected, the different algorithms agree wethwhe ground truth results (thick grey lines)trs tower wavenumbeis
(larger wavelengths\), whereas the agreement worsens for increasingemambers. Also expected is the improved
agreement with increasing seeding concentratiothé&tiowest ppp of 0.005 (Figure 4-left), the lin@gerpolation result
departs from the ground truth already at a waversurab50 m' (or wavelength of 20 mm, that is more than 12 sikeeger
than the average inter-particle distance). In @stfrthe data assimilation algorithms follow theugrd truth result up to
k=~ 200 nt* (A = 5 mm), thus yielding an increase of the range ofluesblength scales by factor 4 with respect tolihear
interpolation. Similar trends are retrieved alsotred higher seeding concentrations (Figure 4-miduid -right), with
improved agreement with the ground truth resulparticular, at the highest ppp of 0.16, most dasimilation algorithms
capture correctly the power spectrum ugkto 300 m* (A = 3 mm), whereas the linear interpolation result stdegarting
from the ground truth already arouket 100 m! (A = 10 mm). Hence, based on this spectral analysis, itbeaconcluded
that the data assimilation algorithms increasadhge of resolvable length scales by factor 3wtk respect to the standard
interpolation, and that the smallest fluctuationsrectly captured occur at a length scale thattis 8 time larger than the
average inter-particle distance.
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Figure 4:Power spectral density of the wall-normal velocitynponent ¥, averaged in the region 20 nZ < 30 mm. Left: ppp= 0.005;
middle: ppp = 0.025; right: ppp = 0.16. The bottom horizontal axis represents the wandrar, while the top horizontal axis represents the
corresponding wavelength. The dashed vertical livfegn present, corresponds to the wavenumber (eelergth) associated with the

average inter-particle spacing. The symbol keydyagopall plots.
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4.2  Velocity gradient components

The evaluation of the components of the velocity gradient is notoriously more challenging than that of the velocity itself for
two main reasons: first, under-resolved or unresolved length scales result in the underestimation of the spatial derivatives of
the velocity; second, the spatial derivative operator acts as a high-pass filter onto the velocity field, thus yielding a decrease
of the measurement signal-to-noise ratio in presence of uncorrelated noise. The accuracy of the evaluation of the velocity
gradient components is assessed in Figure 5 via the analysis of the vorticity magnitude for the case ppp = 0.005. The ground
truth vorticity field presents vorticity peaks up to 1000 Hz attributed to small-scale vortical structures especially in the region
closer to the cylinder (X < 0). All considered algorithms exhibit a significant modulation of the vorticity field, yielding
vorticity peak values seldom exceeding 500 Hz. The highest modulation occurs with the IOT algorithm and, as expected,
when using the linear interpolation approach.
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Figure 5: Slices of the vorticity magnitude for the ppp =0.005 case. The ground truth flow field from the numerical simulations is shown
on the top-left. The vorticity result from the linear interpolation of the particles velocities onto the Cartesian grid is shown on the bottom-
right.
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Figure 6: Error of the vorticity magnitude obtained with the different algorithms, for the case ppp = 0.005.

The contours of the vorticity error magnitude, presented in Figure 6, confirm that the vorticity errors are of the order of
100 Hz or 10% of the peak vorticity. These errors are mainly negative because the algorithms tend to underestimate the actual
vorticity. The maximum errors are encountered closer to the cylinder, that is at lower values of the streamwise coordinate X,
where small vortical structures of high swirling strength are present. From the visual analysis of the contours of Figure 6,
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small differences are noticed among the differ&gargthms, with lower vorticity errors for DLR aridaVision 4D algorithms
and larger errors for the 10T and the linear intdgiion approaches.

Similar to the velocity, a quantitative analysigiué vorticity magnitude error is conducted in terof mean bias and random
components in the entire measurement domain, exgjudregion of 4 mm thickness at the outer edghs.results of this
analysis are shown in Figure 7. As expected, tieeeeclear trend of increasing performance wheneaging the seeding
concentration. As discussed above, the mean bias€Figurer-left) are negative as a consequence of the spadidulation
of the velocity field that yields underestimatedtiaty values. The DLR algorithm exhibits the bestrformance in terms
of mean bias errors, with error values betweenH8Gat the lowest ppp and -20 Hz at the highest Somilar values are
retrieved also with the LaVision algorithms and Té Delft VIC+ approach. In contrast, the IOT algom and the linear
interpolation approach return bias error valuesvbeh -120 and -80 Hz. The random error componiumtriated in Figure
7-right, exhibits values of around 150 Hz at ppp.608, with small differences among the differemoaithms. At higher
seeding concentrations, a significant error reducis retrieved down to 80 Hzith the DLR and LaVision algorithms; in
contrast, for the other algorithms the random erremain above 110 Hz (IOT algorithm) or even ckos&30 Hz (TU Delft
VIC+ and linear interpolation approaches). Considgthat the ground truth peak vorticity attainsues of about 1000 Hz,
it can be concluded that, using the best data #dasiom algorithms at the highest ppp level of @ lthe vorticity error values
are of the order of 2% and 8% for the bias andeemdomponents, respectively. However, these emorsase to 8% and
13%, respectively, when less performing data assiimn algorithms are employed.
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Figure 7:Bias (left) and random (left) error of the vorticihagnitude as a function of the ppp. The symbgtlapply to both plots.

For sake of completeness, the histograms of theritgldivergence are computed, so as to evaluatachuracy also of the
diagonal terms of the velocity gradient tensor.ngehe flow incompressible, the velocity divergeixexpected to be null,
and the histograms are theoretically Dirac pulsggared at zero. The results, illustrated in Figyrehow that the LaVision
3D and 4D algorithms achieve close-to-zero divetgeat all ppp values. Larger values of the velodityergence are
estimated with the DLR algorithm and the TU Deffpeoaches, typically within 1 or 2 Hz. In contrdbg IOT and the linear
interpolation approaches return a much broaderilgigton of the velocity divergence, which implieslower degree of
agreement of the measured flow field with the aarity equation.
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4.3 Static pressure

The pressure gradient is related to the Lagrang@@eleration via the Navier-Stokes equations, apd tntegrated either
directly or solving the Poisson equation for presgwan Oudheusden, 2013). Hence, errors in thealbagan acceleration
propagate to the pressure, although the integratmsmator is expected to attenuate the contributfothe random errors.
Figure 9 illustrates the static pressure field jplane close to the centerline (Y = -0.2 mm) far kbwest seeding density
case (ppp = 0.005), along with the correspondingrdields. The ground truth field shows the presenf two large low-
pressure blobs, at X = -0.03 m and X = 0.015 meaetsely, associated with vortices shed by thentdr. The minimum
pressure within these regions is of about -110rfelax- 80 Pa, respectively, corresponding to 50% #&9d 8f the free-stream
dynamic pressurags = 221.8 Pa). Additionally, small flow features lwlbw pressure are present near the upstream édge o
the measurement domain. All algorithms are cap@bleproduce the largest low-pressure blob at X.63-m, although not
always with the correct pressure magnitude. Ini@adr, the IOT algorithm yields a minimum pressateenuated by 50%,
whereas the linear interpolation reuttverestimates the pressure peak by 100%. The altp@iithms return correct values
of the pressure peak typically within 10%. The setpressure blob, located at X = 0.015 m, is nptwad by the IOT
algorithm, whereas all other algorithms correcdgnoduce it. The error fields, presented in th@séaolumn of Figure 9,
show that the errors are mainly random, with peakkigh as 50 Pa or over 20% of the free-strearardigpressure. The
IOT algorithm and the linear interpolation approawthibit larger bias errors in correspondence ef phessure peak at
X =-0.03 m, which is respectively underestimatad averestimated by the two approaches.

The quantitative analysis of the errors, illustdaite Figure 10, confirms that the random errors ihate over the bias errors.
The latter are typically in the range [- 5, 5] Bacept for the 10T algorithm, exceeding the valoks5 Pa for ppp = 0.025,
and the linear interpolation approach, exceediegvdiues of £5 Pa for all the concentrations. Aseexed, the accuracy of
the pressure reconstruction increases with theirsgetensity, thus yielding a reduction of the ramderror component
(Figure 10-middle). However, the random errors eardecrease rapidly up to ppp = 0.025, whereasfldttgn for higher
seeding concentrations. At ppp = 0.16, the randoorefrom the different algorithms range betwedPad(less than 2% of
ginr, achieved with the DLR algorithm) and 18 Pa (8%grf obtained with the linear interpolation approadi}o, it is
noticed that the use of temporal information in dlaga assimilation algorithm slightly improves firessure reconstruction
(see comparison between LaVision 3D and LaVisionrdfllts, where the latter always yields lower mancerrors).The
cross-correlation coefficients between the pardiotp’ results and the ground-truth pressure fielgure 10-right) confirm
the capability of the data assimilation algorithomatcurately reconstruct the larger-scale featuwrdise pressure field. For
the two higher seeding concentrations, the cros®ladion coefficient is close to or above 0.8,hwialues even exceeding
0.95 especially at ppp = 0.160. As anticipated, phessure reconstruction is more challenging atloleest seeding
concentration due to the low measurement spatial resolution; in these conditions, the cross-correlation coefficients range
between 0.5 (10T algorithm) and 0.93 (LaVision 4Bacgithm).
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2 The linear interpolation result is obtained bgtfitomputing the velocity and Lagrangian accelerdiields based on linear
interpolation of the particles’ information, themmputing the pressure gradient@g = —p DV /Dt, and finally solving the
Poisson equation for pressure.
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Figure 9:Static pressure field (left column) and error & itatic pressure (right column) at the plane ¥.2 mm, for the case ppp = 0.005.
First row: ground truth result. The values in tioéocbars are in Pascal.
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Figure 10:Mean bias error (left), random error (middle) amdss-correlation coefficient with respect to thewrd truth (right) of the
static pressure, evaluated at plane Y = -0.2 mm,faaction of the ppp. The errors and cross-cati@i coefficient are evaluated over the
entire measurement domain, excluding a borderrof(10 grid points) at the outer edges. The syrkbgs$ apply to all plots.

The evaluation of the static pressure on the searfdicolid objects is of great relevance in aeragyics and fluid-structure
interaction problems, because it enables to cheniaetthe spatial distribution of the aerodynansiads. Unfortunately,
computing the surface pressure often involves ewere challenges than evaluating the static pressutiee flow field,
because of the small magnitude of the wall-presBuctuations, the large velocity gradients in bwundary layer, and the
presence of unwanted light reflections. The grounth surface pressure field, illustrated in Figafetop for the case
ppp = 0.005, confirmthat indeed the pressure variations on the surface are a small fraction of those in the flow field; small-
scale flow structures are visible, with pressurees varying between —30 and 30 Pa, with the preggenerally decreasing
along the streamwise direction. The results ofdifferent participants, shown in the first columinFogure 11, confirm the
complexity of the surface pressure reconstructi@blem. At this low seeding concentration valuenaof the algorithms
is able to correctly reconstruct the small-scakespure fluctuations encountered in the ground-tiloth field. The DLR
result is the closest to the actual pressure figld reproduces the increase of pressure alongtrbanmsvise direction,
although with strong modulation of the small flotnustures. The results from the LaVision 3D and isidh 4D algorithms
strongly attenuate the pressure fluctuations toréimge between -5 and 5 Pa. The other approactstsad, yield a very
noisy surface pressure field, with limited agreemeith the actual pressure field. For those algong, the errors on the
estimated pressure, illustrated in the second aolofhfrigure 11, even exceed the actual pressuceufitions.



14" International Symposium on Particle Image Velotigne ISPIV2021
August 1-4, 2021

Y [m]

.04 -0.03 -0.02 -0.01 0 001 0.02 003 0.04
X[m]

Surface p DLR

50
40
30
20
10

-10
-20
-30
40
-50

Surface p LaVision 3D
—o T T T T

002 = S s g =
o ° (@}
0.01 & 02?) ﬁn
°
E Lk (0} <
> a© ®

S

Surface p LaVision 4D
N z z

o O

Y [m]

RS D % 2N
‘ () })4
¥ a

/.
{

BTS00 o i
\t»”@*ﬁwg S

A Qy L
0,
‘ ’ vrt) "A‘

004 -003 -002 -001 0 001 002 003 004
X[m]

<0.04 -0.03 -002 -001 0 001 002 003 004
X [m]
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for the case ppp =0.005. First row: ground trugule The values in the colorbars are in Pascal.



14" International Symposium on Particle Image Velotigne ISPIV2021
August 1-4, 2021

The quantitative analysis of the mean bias eremlom error and cross-correlation coefficient i ground-truth surface
pressure field is presented in Figure 12. The sarfaessure errors are in a similar range as tbesdn the rest of the flow
field shown in Figure 10 (bias errors: between -ah@ 10 Pa; random errors: between 5 and 20 Pa). However, as a
consequence of the smaller magnitude of the supiasure fluctuations, the cross-correlation egefit drops significantly
to values below 0.8. The largest cross-correlationfficient (0.8) is obtained with the DLR algorith and is rather
independent of the seeding density; in contrast, the other approaches return cross-correlation coefficient values below 0.6,
which further drop at the lowest seeding conceiatnatonfirming the poor surface pressure reconttyn accuracy in this
condition.

Finally, the results of the spectral analysis angtirface pressure are illustrated in Figure 13hfethree ppp levels. A clear
trend is visible of increasing agreement betweewgd-truth and participants’ results at increasiagding concentration.
However, some algorithms (DLR, LaVision 3D and Lsivh 4D) underestimate the pressure fluctuatioa atave numbers,
whereas others (IOT and linear interpolation) temdverestimate them, thus resulting in more ngigssure fields. The
pressure spectrum of the TUD VIC+ algorithm agreedl with the ground-truth result at the two largeeeding
concentrations, whereas at ppp = 0.005 it overastisthe pressure fluctuations at the lower wavebeus k < 20 m?), and
underestimates them at the higher wave numbers.
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Figure 12:Mean bias error (left), random error (middle) amdss-correlation coefficient with respect to thewrd truth of the surface
pressure, evaluated in the plane Z = 0.01 mm,fasction of the ppp. The symbol keys apply to &itg.
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5 Conclusions

This work presents the main results of the Datdmitstion challenge organised within the framewafkthe European
Union’s Horizon 2020 project HOMER (Holistic Optlddetrology for Aero-Elastic Research). The chafjermade use of
a synthetic experiment, presented in another damuttan to this symposium (Leclaire et al., 202Epnmoducing the wall-
bounded flow in the wake of a cylinder. The paet®lpositions along their trajectories were prodide the participants, in
three datasets reproducing the seeding concemtrégie@ls corresponding to ppp = 0.005, 0.025 ard.0The output
guantities were the three velocity componentsnthe components of the velocity gradient tensortardstatic pressure, all
defined in a Cartesian grid bf= 0.4 mm grid spacing.

Four research groups took part to the DA challengemely DLR, IOT, LaVision GmbH and TU Delft. Thegtier two groups
submitted results with two algorithms each. For ind@ncerns the estimated velocity, errors betweé#naBd 12% of the
bulk velocityV,, were obtained, depending on the seeding concimtrand the data assimilation algorithm. Thesersraoe
of similar magnitude as those achieved when usiagonventional linear interpolation of the pagglvelocities onto the



14" International Symposium on Particle Image Velotigne ISPIV2021
August 1-4, 2021

output Cartesian grid. However, the spectral aimalys/ealed that the use of the data assimilatigarithms enables to
increase the range of resolved length scales ligria8 to 4 with respect to the linear interpolatapproach. The analysis
of the velocity gradients highlighted the preseofcieias and random errors of 100-150 Hz, or 10-Dé%he typical vorticity
magnitude peaks. As expectédth error components decrease with increasing seeding concentration; however, even at the
highest ppp of 0.16, bias and random errors exnge2d Hz and 80 Hz, respectively, are obtainedallinthe evaluated
pressure featured bias errors within +10 Pa andamnerrors between 5 Pa and 20 Pa. A better agraesith the actual
pressure field (cross-correlation coefficient extieg 0.95) was achieved away from the wall, whemathe solid surface
the agreement decreased (cross-correlation cagffibielow 0.8) due to the lower magnitude of trespure fluctuations.
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