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Abstract

Lagrangian Particle Tracking (LPT) has become a near-standard approach for performing accurate
3D flow measurements,  thanks notably  to the technical  breakthroughs brought by the Iterative
Particle  Reconstruction  (IPR:  Wieneke,  2013)  and  Shake-the-Box  (STB:  Schanz  et.al,  2016)
procedures. These decisive progresses have triggered a number of studies relative to the eduction of
flow kinematics and dynamics based on particle trajectory analyses. Novara & Scarano (2013), and
others,  focused on polynomial approximations of the trajectories,  which analytically provide the
material derivatives used to estimate pressure gradients. In particular, approximations based on
second order polynomials  fits of  a small  number of  particle positions are used in commercially
available softwares and among research teams as a straightforward solution to obtain the first and
second order derivatives with a limited effect of the measurement noise. Additionally the analyses
conducted during the 2020 LPT challenge (Leclaire, 2020 ; Sciacchitano,  2020) have addressed the
performance of methodologies used by different groups with respect to second order trajectory fits
for both multi-pulse and four-pulse (Novara et. al, 2016) LPT cases. On more advanced theoretical
grounds, Geseman et. al (2016) have proposed the trackfit approach using penalized B-splines with
considerations on the time-varying acceleration rate (i.e. jolt or jerk) and spectral content of noisy
particle tracks.

From a general point of view on function approximations, polynomial fit, Taylor developments
and  finite  differences  schemes  are  absolutely  equivalent  ingredients  of  a  unique  framework  in
which  discrete  sets  of  ordered  values  are  represented  by  continuous  functions  of  a  single
parameter.  This  can be easily  recalled using linear algebra applied to the construction of  finite
difference schemes and to the evaluation of their orders of truncation as well as their sensitivity to
measurement  noise.  The  present  contribution  provides  a  practical  methodology  that  can  be
included  in  a  global  uncertainty  quantification  framework.  Examples  illustrating  a  variety  of
schemes are presented, along with suggestions of analytical tests based on theoretical results. 

1 Introduction

 Within the Lagrangian Particle Tracking (LPT) framework, the time-history spatial positions of
the  individually  identified  particles  are  used  to  constitute  discrete  tracks  and  compute  their
trajectories as well as their kinematics. In pratice, acquisition sequences consist in two-, four- or
multi-pulse exposures (resp. TP, FP and MP) resulting in two, four or multiple successive measured
positions of a single particle in space, as depicted in Figure 1. 
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Figure  1:   Typical  distribution  of  two-  (green)  four-  (blue)  and  multi-pulse  (purple)  LPT
measurement time lags.

In  conventional  PTV  algorithms,  TP  measurements  are  used to  derive  central  positions  and
velocities using second-order differentiation schemes, thanks to the symmetry properties of the 2-
point  centered finite differences formulation.  A minimum of three positions is needed to obtain
acceleration using second order derivation schemes. For FP and MP (i.e more than two pulses) LPT
measurements,  higher order derivatives are accessible using second or higher order derivations
schemes. Apart from the jolt which is sometimes studied, the quantities of interest are most often
limited to position, velocity and acceleration. It is also of common practice to model trajectories as
piece-wise polynomials of degree ranging from 2 to a few units, from which these quantities are
derived. While finite differences derivation schemes at various orders are long known,  they are
often presented as well-chosen linear combinations of Taylor developments from which a particular
derivative is obtained. Elements of the Richardson expansion are also sometimes used to build the
linear combinations that can increase the truncation order of a given scheme. The formalism used
below aims at rationalizing the practical writing of differentiation schemes with a view to ease the
estimation of truncation errors, the propagation of measurement noise and uncertainty, and a direct
correspondence with polynomial approximations.

2 Taylor development and polynomial fit

 The  estimation  of  derivatives  using  polynomial  approximations  or  schemes  based  on  Taylor
developments  are  perfectly  equivalent  approaches.  This  is  recalled  below  in  the  context  of
discretized trajectories.

Given a set of particle positions  xk  belonging to the same trajectory  Γ  as obtained from TR-
PTV or LPT,  positions,  velocities,  accelerations  and other derivatives can be educed from linear
combinations of the measured positions using either finite differences or polynomial fits.

Given an instant of interest t  and a distribution of time lags τk  at which particle positions are
measured, one writes : 

∀ τk , xk=Γ(t+τk)+ek ,

 where ek  is the measurement error on the particle position.

Within a set  T m={t+τ1;…; t+ τm}  of  m  measurement instants, the corresponding measured

and  true  positions  are  respectively  written  as  Xm=[ x1 … xm]
⊤  and

Gm=[Γ(t+τ1) … Γ(t+τm)]
⊤  so that Xm=Gm+Em .

The Taylor development of order n∈ℕ+  of the true positions around instant t  then writes:
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∀n∈ℕ+ ,∀ τk ,Γ( t0+τk )=Γ(t) + τk Γ̇ (t) + … + τk
n
Γ
(n)
(t )/n! + o( τk

n
) .

Yielding, for the set T m :

Gm=[
1 τ1 … τ1

n

⋮ ⋮

1 τm … τm
n ] [

Γ(t)
⋮

Γ
(n)
( t)/n!]+o(

τ1
n

⋮

τm
n ) .

Similarly, a polynomial  P  of degree n  fitting positions Gm  according to a given norm can be

defined from its coefficients (ak)k=0…n  and written for the set  T m  as:

[P( τp)]p=1…m=[
1 … τ1

k
… τ1

n

⋮ ⋮

1 … τm
k

… τm
n ][
a0

⋮
an] .

Identifying coefficients (ak)k=0…n  to the successive derivatives of P  gives:

∀ k∈{0…n}, ak=
P(k)(0)
k !

.

So that

[P( τp)]p=1…m=[
1 … τ1

k
… τ1

n

⋮ ⋮

1 … τm
k

… τm
n ][

P (0)
Ṗ (0)
⋮

P(n)(0) /n !
] .

For the positions Gm  and derivatives (Γ(k)
( t))k=0…n  to be approximated by polynomial P , one

therefore gets the same matrix formulation as the one provided by the Taylor development of Gm

around  instant t .  The  formal  difference  between  the  two  approaches  lies  in  the  presence  of
truncation  terms  in  the  Taylor  development  and,  implicitly,  of  a  possible  fitting  error  in  the
polynomial approximation.

3 System inversion

The  linear  relation  between  the  positions  and  derivatives  is  fully  contained  in  the  full  or
truncated Vandermonde matrix constructed from the time lags. For an equal number of positions
and derivatives terms ( m=n+1 ), the matrix is complete and invertible provided that all time lags
are  distinct  from  each  other.  The  polynomial  therefore  provides  an  exact  fit  of  the  measured
positions.  For reduced polynomial  degrees or orders of  truncation (i.e.  m>n+1 ),  the truncated
Vandermonde matrix is still left-invertible so that the generalized or the Moore-Penrose pseudo-
inverse can be used to identify the successive derivatives.

In the following paragraphs, a reference time lag dt  will be used in order to represent each time
lag τk  by τk=αk dt  with ∀ k∈ℕ , αk∈ℕ , as represented in Figure 2. 
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Figure  2:   Definition  of  two-  (green)  four-  (blue)  and  odd  or  even  multi-pulse  (purple)  LPT
measurement  time  lags  referenced  to  a  central  measurement  time,  as  used  in  finite  difference
schemes.

The Taylor development now writes:

Gm=[
1 α1 … α1

n

⋮ ⋮

1 αm … αm
n ][

Γ(t)
⋮

Γ
(n)
( t)dtn/n !]+o(dt

n
) .

For a square system, the m×m  Vandermonde matrix V (α1 ,… ,αm)  will be denoted V m  and

its inverse  Wm .  For  m>n+1 ,  the  m×(n+1)  truncated  Vandermonde matrix will be denoted

V mn  and its (n+1)×m  pseudo-inverse W nm , noticing that V m=V m m−1  and Wm=Wm−1 m . For

the estimation of truncation errors,  m× p ( p>n)  matrices  V mp  will  be used, which are either

right-truncated, square or right-extended Vandermonde matrices, depending on the values of  m ,
n  and p .

Defining  Am=[α1 … αm]
⊤  and  Dn=[Γ(t) … Γ

(n )
(t)dt n/n! ]⊤ , the Taylor development can

also be formulated as: Gm=V mnDn+o (dt
n
)= [Am

0
… Am

n ]Dn+o (dt
n
) .

3.1 Exact fit

For m=n+1 , the Taylor development can be inverted to provide V m
−1Gm=Dm+o(dt

n
) , so that

Dm=W mGm+o(dt
n
) .

The differentiation schemes at all orders are therefore contained in the weighting matrix Wm ,
modulated by the temporal and factorial terms, to provide an estimate of the derivatives as:

[
~
Γ(t ) … ~

Γ
(n)
(t )]⊤=diag ((k !/dt k )k=0…m−1 )Wm Xm=FmWm Xm .

Formally, the order of truncation is equal to n=m−1  but can drop to lower values depending
on the distribution of the time lags.
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3.1.1 Error propagation:

In the specific case of an exact fit, the Taylor expansion at order n=m−1  and the polynomial fit
of the same degree fall exactly on the measured positions Xm , inducing no approximation error. It
is then straightforward to educe the levels of error propagation due the differentiation schemes as:

um=FmWm Em .

This  formulation evidences the  increasing  sensitivity  to  measurement  errors  with  increasing
truncation orders, as a by-product of the well-known Runge phenomenon occurring in increasing
order polynomial interpolations

3.1.2 Truncation error:

The truncation error at order p>n+1   can be estimated using supplementary Taylor terms :

Gm=[ Am
0 Am

1
… Am

p ] [
Γ(t)
⋮

Γ
( p)
( t)dt p/ p !]+o(dt

m
)=V mpDp+o (dt

p
)=[V m Am

n+1
… Am

p
]D p+o(dt

p
)

.

Inverting the system one obtains:

WmGm=W m[V m Am
n+1

… Am
p
]D p+o (dt

p
)=Wm[V m Am

m+1
… Am

p
][

Dn+1

⋮

Γ
( p)dt p / p !]+o(dt

p
)

and

Dn+1=WmGm−Wm [ Am
n+1

… Am
p ] [Γ(n+ 1)dt n+1

/(n+1)! … Γ
( p)dt p / p ! ]

⊤
+o(dt p) .

Hence, truncation errors at order m=n+1  and above are given by :

∀ p>n+1 ,

FmWm [ Am
n+1

… Am
p ] [Γ(n+1)dt n+1

/(n+1)!… Γ
( p)dt p / p ! ]

⊤
+o(dt p)=FmW m Am

n+1→ pDn+1→ p+o(dt
p
)

.

Considering the derivation terms (including the 0th order term), the remaining truncation error
terms can be different for each derivation order depending on the distribution of time lags.
3.2 Approximate fit

Extending  this  approach  to  lower  order  estimates  in  which  n<m−1  is  almost  identical,
although the Vandermonde matrix will not be fully obtained and an over-constrained system will be
defined.  However,  as  right-truncated  Vandermonde  matrices  are  always  left-invertible,  their
pseudo-inverse writes:

W nm=(V mn
⊤ V mn)

−1
V mn

⊤  so that W nmV mn=1n+1 .
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The pseudo-inverse W nm  provides the differentiation scheme to be used to fit the trajectory and

its  n  first  derivatives,  as  Gm=V mnDn+o (dt
n
)  and  W nmGm=Dn+o (dt

n
) .  The  derivatives  are

estimated using

[
~
Γ(t ) … ~

Γ
(n)
(t )]⊤=Fn+1W nm Xm .

Hence, the levels of error propagation due the differentiation schemes are: un+1=Fn+1W nmEm .

The truncation error at order p>n+1   are given by :

∀ p>n+1, Fn+1W nm Am
n+1→pDn+1→ p+o(dt

p
) .

The approximate fit  therefore  directly  generalizes the exact  fit  using either the  standard-  or
pseudo-inverses of Vandermonde matrices constructed from a Taylor development.
3.3 Examples

The application of these procedures are easily illustrated using examples on common use. For TP
measurements, the two-point centered derivation scheme leads to 3rd order truncation errors for
the first derivative, although it is based on a first order development. For MP measurements, the
three-point centered derivation schemes leads to the same stencil for the first derivative, although it
is  based  on  a  second  order  development.  Acknowledging  the  fact  that  estimates  are  generally
conducted on larger, centered, regular sets of instants in MP measurements, the three-point case is
sufficient to identify which terms are to be taken into account for uncertainty and error estimates. A
dedicated example is also given for the specific case of FP measurements, using a generic centered
distribution of instants, and which illustrates the slight differences between exact and approximate
fits of close orders.

3.3.1 Exact fit

Two-point centered scheme (TP):

For  the  two-point  centered scheme  built  from  instants  t−dt  and  t+dt ,  the  differentiation
scheme is simply obtained from the Taylor terms at order 1:

G2=[1 −1
1 1 ][ Γ(t )Γ̇( t)dt ]+o(dt) ; V 2=[1 −1

1 1 ] ; W 2=[ 1/2 1/2
−1/2 1/2] .

For this particular case, and more generally for centered distributions of an even numbers of
instants,  halving dt  lightens the writing of the time lags surrounding the instant of interest (see
Figure 2).

The central position and first derivative are estimated using [~Γ(t )
~
Γ̇(t)]⊤=F2W 2 X2 , and the

propagation of measurement errors is given by u2=F2W 2E2 :

u2=[1 0
0 1/dt ][

1/2 1 /2
−1/2 1 /2]E2=[ 1/2 1/2

−1/2dt 1/2dt ]E2 .
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For  uniform  error  levels,  this  yields  error  propagation  terms  of  respective  norms

[1 1/dt ]
⊤
/√2 .

The  truncation  error  on  both  terms is  obtained  by  right-extending  the  2×2  Vandermonde
matrix to the 2×4  matrix V 23  and multiplying it by the finite difference scheme:

W 2V 23=[ 1/2 1 /2
−1/2 1 /2] [

1 −1 1 −1
1 1 1 1 ]=[

1 0 1 0
0 1 0 1] ,

meaning that the central  position is obtained with a 2nd order truncation error and the first
derivative with a 3rd order truncation error. Applied to the differentiation terms up to the 3 rd order,
this explicitly yields:

F2W 2V 23D3=[Γ(t ) + Γ̈ (t)dt 2
/2

Γ̇(t ) + Γ
(3)
( t)dt2/6]+o(dt2) .

Three-point centered scheme (MP):

For the three-point centered scheme built from instants t ,  t−dt  and t+dt :

G3=[
1 −1 1
1 0 0
1 1 1 ][

Γ(t)
Γ̇(t )dt

Γ̈(t )dt 2
/2]+o (dt) ; V 2=[

1 −1 1
1 0 0
1 1 1 ] ; W 3=[

0 1 0
−1/2 0 1 /2

1/2 −1 1 /2] .

The propagation of measurement errors is given by u3=F3W 3E3 :

u3=[
0 1 0

−1/2dt 0 1 /2dt
1/dt 2 −2/dt2 1/dt 2 ]E3 ,

of norms [1 √2
2dt

√6
dt2 ]

⊤

for uniform noise levels.

The truncation error at order 4 is obtained from :

W 3V 34=[
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1 ] .

The central position is obtained with no truncation error, as it is measured prior to building the
differentiation scheme. This property also distinguishes centered schemes based on odd or even
numbers  of  instants.  The first  derivative  is  obtained with  a  3 rd order  truncation error,  and the
second derivative with a 4th order truncation error. One gets:
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F3W 3V 34D3=[
Γ(t)

Γ̇ (t) + Γ
(3 )
(t)dt2/6 + o(dt3)

Γ̈ (t) + Γ
(4)
(t )dt 2

/12 + o(dt2)] .

It can be noticed that the value of  dt  is doubled compared to the two-point scheme obtained

with the same sampling, multiplying the error levels and truncation errors by factors 2±1…2  .

Generic four-point centered scheme (FP):

For  centered  FP  measurements,  time  lags  are  symmetrically  defined  as
(τk /dt)k=1…4={−a ;−b ;b ;a } with a>b>0 . One can set b=1  and change dt  accordingly without

loss of generality to introduce the ratio r=a/b≠1  which is sufficient to describe any centered FP
distribution. As for the TP case, halving  dt  lightens the writing of the time lags surrounding the
instant of interest.

The exact fit is obtained from a Taylor development at the 3rd order in which:

V 4=[
1 −r r2

−r3

1 −1 1 −1
1 1 1 1
1 r r2 r3 ] .

Here, setting r=±3  or r=±1/3  transforms the generic FP case in a regularly distributed four-
instants MP case, which can be generalized to centered MP measurements based on an even number
of instants.

This yields the inverse matrix:

W 4=
1

2r (r2
−1) [

−r r3 r3
−r

1 −r3 r3
−1

r −r −r r
−1 r −r 1

] ,

and gives the propagation error term u4=F3W 4 E4 :

u4=
1

2 r (r2
−1) [

1 0 0 0
0 1/dt 0 0
0 0 2/dt2 0
0 0 0 6/dt 3][

−r r3 r3
−r

1 −r 3 r3
−1

r −r −r r
−1 r −r 1

]E4 ,

of norms: 
1

|r2
−1|[ √

r4
+1

√2
√r 6

+1

√2|r|dt
2

dt 2

3√2(r2
+1)

|r|dt3 ]
⊤

.

The corresponding truncation errors at order 5 are given by:
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F4W 4V 45D5=[
Γ(t ) − r2 dt

4

24
Γ
(4 )
(t) + o(dt5)

Γ̇(t ) − r2 dt
4

120
Γ
(5 )
(t) + o(dt 4

)

Γ̈(t ) + (r2
+1)

dt 2

12
Γ
(4)
(t ) + o(dt2)

Γ
(3)
(t) + (r2

+1)
dt 2

20
Γ
(5)
(t) + o(dt2)

] .

The  central  position  and  acceleration  are  obtained  with  a  truncation  error  of  4 th order,

respectively proportional to r2  and r2
+1  . Velocity and jolt are obtained with a truncation error of

5th order, also respectively proportional to r2  and r2
+1  .

3.3.2 Approximate fit

For FP or MP measurements, the second order fit is mandatory but sufficient to obtain 2 nd order
derivatives. It can be used to illustrate approximate fits at all orders below m .

Apart  from  the  exact  m=n+1=3  case  illustrated  above,  it  can  be  written  from
V m2=[Am

0 Am
1 Am

2
]  whose pseudo-inverse is W 2m  . Error propagation is directly given by writing

F3W 2m Em  and truncation errors from:

W 2mGm=D2+W 2m Am
3
Γ
(3)dt3/3 !+…+W 2m Am

( p)
Γ
(p )dt p/ p !o(dt p) .

For odd MP distributions, the construction and analysis of the central finite differences scheme is
similar to what is obtained for the exact  m=n+1=3  case.

For  even  MP  distribution,  the  construction  of  the  centered  finite  difference  scheme  can  be
illustrated by a second order approximate fit  of  the  generic  FP case.  The corresponding Taylor
development is built as a restriction of  V 4  used in the exact FP case:

V 42=[
1 −r r2

1 −1 1
1 1 1
1 r r2] ,

which results in the pseudo-inverse matrix:

W 24=
1
2 [
−

1
r 2
−1

r2

r 2
−1

r2

r 2
−1

−
1

r2
−1

−
r
r2
+1

−
1
r2
+1

1
r2
+1

r
r2
+1

1

r2
−1

−
1

r 2
−1

−
1

r2
−1

1

r2
−1

] ,
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and in which only the first derivative weights differ from W 4 .

The error propagation term is u4=F3W 24 E4 , of norms: [ √r4
+1

√2|r2
−1|

1

√2(r2
+1)dt

2

|r2
−1|dt 2 ] .

The truncation error is given by:

F3W 24V 44D4=[
Γ( t) − r2 dt

4

24
Γ
(4 )
(t) + o(dt 4

)

Γ̇( t) +
r 4
+1

r2
+1

dt 2

6
Γ
(3 )
(t) + o (dt 2

)

Γ̈( t) + (r2
+1)

dt 2

12
Γ
(4 )
(t) + o (dt 2

)] .

Compared to the exact FP scheme, the estimates of the position and acceleration are identical.
The difference between the two schemes only appear in the velocity estimates, which are obtained
at order 3 in the approximate fit and order 4 in the exact fit. Conversely, the error propagation on
the velocity term is governed by:

 √r6
+1

√2|r||r 2
−1|dt

 for the exact fit,

and

1

√2(r 2
+1)dt

 for the approximate fit.

It is then clear that despite the lower truncation error, the 2nd order fit results in a significantly
lower sensitivity to measurement errors,  of  at least a factor of the order of 3 depending on the
chosen value for r . This result is also a by-product of the Runge phenomenon.

For the choice of an optimal value of  r  and an exact or approximate fit, some knowledge on the
3rd derivative  can  be  obtained  from  the  exact  fit  and  compared  with  the  propagation  of
measurement  noise,  however  anticipating  the  choice  of  r  before  an  experiment  may  not  be
straightforward unless numerical simulations or theoretical results can help estimate the balance
between the two terms. 

For higher order schemes on MP measurement leading to long tracks, the orders of derivation
needed to estimate  the truncation error are accessible by simply increasing the order of the scheme
of  interest by a few units.  Thus,  and accounting for the increased error propagation due to the
Runge phenomenon, all the needed terms can be estimated using:

un+1=Fn+1W nmEm  and ∀ p>n+1, FnW nm Am
n+1→pDn+1→p+o(dt

p
) .

In  order  to  obtain  higher  order  reference  derivatives,  trajectories  may  be  approximated  by
alternative,  non-polynomial  functions.  However,  the  large  spectrum of  possibilities  doesn’t  help
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providing the most appropriate formulation. Analytical flow solutions, though limited to idealized or
approximate configurations, may provide the relevant results for a given situation. A few examples
are proposed below.

3.3.3 Error estimates from analytical trajectories

Finite difference schemes and error estimates as obtained from the above formulations may be
benchmarked against known trajectories from which any order of differentiation can be expressed.
Apart  for specific  cases in which vanishing derivatives are a constitutive  property,  such as,  e.g,
resting,  uniform  or  unidirectional  flow,  free  fall,  etc.,  non-polynomial  analytic  trajectories  can
provide the derivatives needed to qualify a given differentiation scheme.

Basic non-polynomial examples can be found from potential flows, such as the isolated vortex or
normal stagnation points which provide trajectories as steady state streamlines. Unsteady  potential
flows  and  the  corresponding  trajectories  can  also  be  obtained  by  imposing  time-dependent
parameters. Stream-functions can also provide integrable analytical solutions for a variety of 2D
viscous  flows,  including  boundary  layers  (Blasius,  1908)  and  non-orthogonal  stagnation  points
(Dorrepal, 1986). However, in many formulations,  explicit time-dependent trajectories cannot be
found and must be numerically integrated, leading to additional error terms, though the successive
derivatives remain accessible.

A universal illustration is provided by the isolated vortex for which trajectories are described by
harmonic terms, with or without advection velocity, to provide circular or cycloid-like tracks. The
truncation terms are therefore obtained from the harmonic terms around the measurement instant.
For example,  expanding  ∀ τk ,Γ(t+ τk)∝sin(ω(t+τk))  and applying the desired finite difference
scheme, then substracting the Taylor terms, will yield and exact expression of the truncated terms.

Similarly,  the 2D inviscid flow normally impinging on a flat plate is represented by potential
φ ∝ x2

− y2 , stream-function  ψ ∝ xy  or potential  f (z)∝z2  in complex formulation, leading to
exponential streamlines that can be expanded around the measurement instant using hyperbolic
functions. Despite its simplicity, this potential is representative of the flow in the close vicinity of
stagnation or separation points on cylinders or wing profiles. For example, the 2D complex potential
of the flow around a cylinder, yields near the stagnation point:

f (z)=U 0( z+ a2

z−a ) : f (z) →
z→0
−U 0

z2

a
,

locally leading to exponential trajectories.  This can be extended to non-orthogonal  impingement
using a stream-function of type  ψ ∝ 1

2 y
2 cosα+xy sinα  to provide combinations of exponential

trajectories of type: 

x=x0e
t
T

sinα
+

1
2
y0 cotα sh( tT sinα)  ; y= y0 e

−
t
T

sinα
.

Finally, in the close vicinity of a flat plate, the Blasius boundary layer classically represented by
the stream-function ψ( x , y )=δ(x )U f ( y / δ( x))  leads to power-law trajectories:

x=x0 (1+ 5
4
U √Re0

y0

x 0
2
α τ)

4/ 5

 ; y= y0 (1+ 5
4

y0

x 0
2
U √Re0α τ)

1/5
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for f (η)=1
2 αη

2
+O(η5

)  and y≪δ( x ) . Since PTV or LPT shall be preferred to PIV measurements in
order  to resolve  near wall  velocity  fields (Kaelher,  2012),  this  last  formulation may be used to
predict uncertainty on a planned measurement, or to fit and qualify existing results.

4 Conclusion

Although finite differences schemes are long known and widely used in the scientific communities
for experimental and numerical studies, little attention is generally paid to their content in terms of
error propagation and actual truncation terms, and to their relevance to data fitting. The present
contribution  provides  a  straightforward and practical  mean to access  and qualify  these  aspects
using  linear  algebra,  with  the  possibility  of  analytical  quantification.  Additionally,  the  resulting
formulations can be easily extended to 2D or 3D for post-processing dense, regular, spatial fields. In
this perspective, the observations of, e.g., Raffel et. al (1998) on the sensitivity of derivation results
obtained  from  schemes based either  on  Richardson  expansion  or  least-square  fits  are  formally
explained by the balance between error propagation and truncation terms.
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