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Tracking the 3D position of tracer particles or small objects like cells or unicellular organisms in minia-
turized lab-on-a-chip or biomedical devices is complicated since it is often not possible in these setups to
use multi-camera approaches. Most successful single-camera approaches for these applications are based
on holography or defocusing. Holographic methods have been used to track complex objects such has bac-
teria (Bianchi et al. (2019)) and even to estimate their orientation (Wang et al. (2016)). However, these
methods require a complex and expensive experimental setup which is not always available in research
laboratories. On the other hand, defocusing methods work with conventional microscopic optics, are easy
to implement, and have shown excellent results in 3D PTV experiments (Qiu et al. (2019)). One main
drawback is that they normally work only with spherical and mono-dispersed tracer particles. A defocus-
ing method that has potential to measure non-spherical particles is the General Defocusing Particle Tracking
(Barnkob and Rossi (2020)) which is based on pattern recognition and can be conceptually extended to more
complex tasks by extending the reference library of particle images, including not only spherical particles
at different depth positions, but also non-spherical particles at different orientations. However, whether this
approach could work in practice is still unknown. First, is the information contained in simple defocused
images sufficient to reconstruct depth and orientation of non-spherical particles, and eventually under which
circumstances? Second, how to practically collect the labelled reference images?

In this work we address the first question using synthetic images of defocused, non-spherical parti-
cles generated by the synthetic image generator MicroSIG (Rossi (2020)), based on ray-tracing (Figure 1).
Specifically, we consider spheroidal fluorescent particles (prolates or oblates), randomly placed at different
depth positions (z) and orientations. Due to rotational symmetry, the orientation is here fully determined
only by two Euler angles, α and β. The in-plane position (x,y) can be obtained with conventional segmen-
tation procedures and is not analyzed here. Therefore, the problem reduces to the determination of z, α,
and β for a set of single particle images. For pattern recognition, we use a ResNet-50 convolutional neural
network (He et al. (2016)), a well-known architecture used for complex image recognition tasks, adapted to
address a regression problem (i.e. we have here three continuous outputs z, α, and β). The neural network
is programmed in the Python language using the Keras/TensorFlow platform.

Figure 1: Working principle used in MicroSIG to generate synthetic images of spheroidal particles. Black
dots on the surface of the spheroid represent uniformly-distributed point-sources of light. A ray-tracing
approach is used to reconstruct the image on the sensor. Due to the rotation symmetry of the spheroid, the
orientation is fully determined by two Euler angles α and β. Figure adapted from Rossi (2020).
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Figure 2: (a) Synthetic images of a prolate spheroid with different positions and orientations. (b) Mea-
sured versus true values of particles’ depth position, z, and Euler angles α and β. The average normalized
uncertainty for the three output variables is 1.5% for z, 3.5% for α, and 1.5% for β.

Results for the case of prolate spheroids with an equatorial radius a = 2 µm and a polar radius c = 8
µm, simulated assuming a 20× magnification lens are shown in Figure 2. The particles are randomly ori-
ented with 0 ≤ α ≤ 2π and 0 ≤ β ≤ π and randomly placed along a total depth h = 40 µm. The ResNet-50
is trained on 5000 labelled images for 110 epochs with a batch size of 64 and Adam as optimizer. After
training, the neural network is tested on 1000 new images giving an average normalized uncertainty for the
output variables of σz/h = 0.015, σα/2π = 0.035, and σβ/π = 0.015. Further results obtained on different
shapes (prolates and oblates spheroids) and different simulated optics will be presented and discussed in
the presentation. In conclusion, this work provides a first proof-of-principle of this method on synthetic
images and opens up possible applications in fields such as swimming of micro-organisms, or non-spherical
colloids. On-going research is planning to apply this method to study the motion of the micro-organism
Euplotes vannus and preliminary results will be presented in the conference.
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