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1 Introduction
Optical Flow (OF) techniques provide “dense estimation” flow maps (i.e. pixel-level resolution) of time-
correlated images and thus are appealing to applications requiring high spatial resolutions. OF methods
revolve around mathematical descriptions of the image as a collection of features, in which the pixel-level
light intensity is the primary variable (Horn and Schunck, 1981). Feature tracking often involves the notion
of scale invariance. Traditional OF approaches, merely based on mathematical formulations, have suffered
from many challenges, especially when directly applied to images of fluid flows textured with tracer particles
(hereafter PIV-like images). Due to the limited number of computationally manageable features and sub-
optimal regularization methods, successful implementation of past approaches has been limited to highly
textured images and small displacement dynamic ranges.

Recent deep learning-based methods have effectively removed several limitations, offering an oppor-
tunity to revitalize OF techniques. Being these based on structural features, the natural ability of artificial
neural networks (ANN) with deep architectures to extract a large collection of such features at multiple
resolutions through convolutions with learnable kernels can be brought to bear. In this context, a number of
newly proposed Convolutional Neural Networks (CNNs), originally developed for computer vision applica-
tions, have been successfully applied to the estimation of flows from dynamic scenes with moving objects.
A recent example is LiteFlowNet (Fig. 1(a)), which provides state-of-the-art performance on a number of
datasets including rigid body motion of objects in space, vehicles moving in traffic and, most notably, com-
puter animated sequences (Hui et al., 2018). However, there is still limited understanding of which network
setup (e.g. architecture, hyperparameter selection, etc.) provides optimal flow accuracy for PIV-like images.

In this context, the goal of this study is to 1) provide a quantitative understanding of how LiteFlowNet
performs for PIV-like images under different training paradigms and hyperparameter setups, and also to 2)
extended the capabilities of LiteFlowNet to quantify flow uncertainty.

2 Methods
LiteFlowNet is a family of recently proposed deep neural networks for optical flow estimation (Hui et al.,
2018, 2020). Its architecture consists of pyramidal feature extraction (NetC) followed by a cascade of flow
inference modules (NetE), i.e., a matching module, a subpixel module, and a regularization module. The
matching module identifies the corresponding features in the image pair, the subpixel module corrects the
flow estimation and provides subpixel accuracy, whereas the regularization module is used to refine the
flow estimate near the boundary of moving objects. The network progressively identifies flow features in a
coarse-to-fine resolution pipeline, starting from level 6 (coarser resolution) to level 2 (finer resolution). The
original LiteFlowNet was trained using a staged process (see Fig. 1(a)), and did not support quantification
of flow uncertainty. The first portion of this work assesses the predictive performance of LiteFlowNet using
available pre-trained weights. Tests targeted synthetic PIV-like image sets with varying particle density, size
and displacement. We then explored the potential of LiteFlowNet when trained from PIV-specific examples,
following two different training paradigms proposed in the literature. In addition, we augmented the Lite-
FlowNet architecture with dropout layers providing both a regularization mechanism and the possibility to
estimate uncertainty from prediction ensembles.



Figure 1: (Left) LiteFlowNet architecture and schematics of a staged training sequence. (Right) Prediction
of instantaneous flow fields: the first row (GT) refers to the ground truth. Predictions are obtained from
end-to-end training with dropouts (P1) and with optimal loss penalties from all levels (row P2). Standard
deviations from ensemble predictions for P1 and P2 are shown in U1 and U2, respectively.

3 Results
First, three sets of weights were tested (referred to as Default, KITTI and Sintel), and their predictions
compared against PIV image processing using three interrogation window sizes (64, 32, and 16), with 50%
overlap. The comparisons were made by statistical analysis of large samples, using average absolute pixel
differences under different up- and down-scaling interpolation strategies. Sintel weights offered the best
performance due to the presence of image deformation and shear in the training dataset, unlike Default and
KITTI which are mainly trained from rigidly moving examples. Sintel results were comparable to those
obtained using PIV correlations. The first newly tested training approach consisted of multiple sessions
where finer image resolution levels are progressively activated at each successive stage (staged training, see
Fig. 1(a)). The second is referred to as end-to-end training, where the complete network is trained all at once,
and the loss is calculated as a penalized aggregation of prediction errors from all levels. End-to-end training
generally produces both minimal losses and best accuracy. However, it is less clear how to weight the losses
from each level, particularly for a general system which may operate on a wide range of particle densities,
for which the importance of the features at various levels may vary within the same training dataset. Finally,
we studied layouts with a dropout layer positioned after each flow inference module and after all modules,
achieving the best performance when placing a dropout layer after each matching module for all levels.

To compare all the approaches described, we trained our modified network on three PIV-specific datasets
generated through numerical simulation (Cai et al., 2019). Results in Fig. 1(b) show consistent performance
improvements of the proposed network leveraging dropouts (P1) which contained small uncertainty (U1)
for all the datasets considered. We also determined optimal weighted losses from various levels, obtaining
reduced accuracy (P2) and larger uncertainties (U2), confirming the key importance of high resolution losses
and providing grounds for designing more efficient network layouts.
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