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Abstract
Convolutional neural networks have been successfully used in a variety of tasks and recently have been
adapted to improve processing steps in Particle-Image Velocimetry (PIV). Recurrent All-Pairs Fields Trans-
forms (RAFT) as an optical flow estimation backbone achieve a new state-of-the-art accuracy on public
synthetic PIV datasets, generalize well to unknown real-world experimental data, and allow a significantly
higher spatial resolution compared to state-of-the-art PIV algorithms based on cross-correlation methods.
However, the huge diversity in dynamic flows and varying particle image conditions require PIV processing
schemes to have high generalization capabilities to unseen flow and lighting conditions. If these condi-
tions vary strongly compared to the synthetic training data, the performance of fully supervised learning
based PIV tools might degrade. To tackle these issues, our training procedure is augmented by an unsuper-
vised learning paradigm which remedy the need of a general synthetic dataset and theoretically boosts the
inference capability of a deep learning model in a way being more relevant to challenging real-world ex-
perimental data. Therefore, we propose URAFT-PIV, an unsupervised deep neural network architecture for
optical flow estimation in PIV applications and show that our combination of state-of-the-art deep learning
pipelines and unsupervised learning achieves a new state-of-the-art accuracy for unsupervised PIV networks
while performing similar to supervisedly trained LiteFlowNet based competitors. Furthermore, we show
that URAFT-PIV also performs well under more challenging flow field and image conditions such as low
particle density and changing light conditions and demonstrate its generalization capability based on an out-
of-the-box application to real-world experimental data. Our tests also suggest that current state-of-the-art
loss functions might be a limiting factor for the performance of unsupervised optical flow estimation.

1 Introduction
Particle-image velocimetry (PIV) is one of the key techniques in modern experimental fluid mechanics used
to determine the velocity components of flow fields in a wide range of complex engineering problems. Cur-
rent processing tools usually compute the most probable particle displacement of two consecutive particle
images based on the cross-correlation between corresponding interrogation windows. This, in fact, always
yields a spatially averaged optical flow output since a single displacement vector is estimated for an entire
interrogation window. State-of-the-art algorithms additionally use a wide range of other elements including
subpixel interpolation, multigrid correlation schemes, automatic outlier detection, and window deformation
according to local velocity gradients. Usually, these approaches fully compensate for the loss-of-correlation
due to in-plane motion if the flow within the final interrogation window is homogeneous or linearly vary-
ing. However, if the displacement is more complex due to unresolved fluctuations, non-constant velocity
gradients, or out-of-plane displacement, the correlation peak is broadened and its intensity is reduced.The
estimated mean field matches the ground truth fairly well, but velocity fluctuations are usually underesti-
mated. A similar bias error can be observed in cases of inhomogeneously distributed tracer particles which
is typical for near-wall flows.
Motivated by the limitations of current, cross-correlation based approaches, PIV analysis based on new
ideas of deep learning in end-to-end optical flow applications was proposed to effectively learn dense dis-
placement fields going far beyond the spatial resolution of the current gold-standard. In contrast to existing
methods, these approaches are general, near-automated, and yield per-pixel flow estimates. These methods
side-step the problem of manually designing an analytical pipeline by defining an end-to-end network whose



output is the dense per-pixel optical flow field. Thus, fine flow structures can be resolved which alternatively
are smoothed due to the spatial averaging inherent to traditional cross-correlation based methods.
The first end-to-end application using CNNs for PIV processing was introduced in Rabault et al. (2017).
They trained different shallow convolutional and fully connected neural networks to predict the particle dis-
placement of various synthetic test cases. However, the proposed networks were only applied to relatively
simple test flows and ultimately did not achieve a competitive accuracy compared to available state-of-the-
art PIV algorithms. A different evaluation scheme called PIV-DCNN was proposed in Lee et al. (2017). It
consisted of a four-level regression convolutional neural network where each level was trained to predict a
velocity vector from two input image patches. The network was verified to achieve similar results compared
to standard PIV methods based on a single cross-correlation pass including window deformation. Due to its
stacked architecture, PIV-DCNN suffers from large computational cost and low efficiency.
In Cai et al. (2019b) a dense particle motion estimator was developed, PIV-FlowNetS, which was mainly
based on FlowNet, a deep optical flow architecture introduced in Dosovitskiy et al. (2015). This motion
estimator extracts feature maps of particle images and predicts a dense displacement field for synthetic and
experimental particle images. It achieves a good accuracy with a higher spatial resolution compared to
standard correlation-based PIV algorithms. Follow-up work adopted an advanced LiteFlowNet architecture
proposed in Hui et al. (2018) which allowed to significantly improve the accuracy.
Recently, a new PIV processing network called RAFT-PIV was presented in Lagemann et al. (2021) out-
performing existing neural based PIV methods significantly. The underpinning optical flow backbone of
this approach are Recurrent All-Pairs Field Transforms (RAFT) proposed in Teed and Deng (2020). RAFT
differs from other optical flow networks in that it operates at a single resolution using a large number of
lightweight, recurrent update operators. First empirical results demonstrate clear improvements of RAFT-
PIV on challenging synthetic benchmark and experimental examples, relative to both classical approaches
and existing optical flow learners.

All these approaches share the main idea of using supervised training on labeled synthetic PIV images.
However, supervised learning of robust optical flow estimation requires a sufficiently large dataset of train-
ing images alongside ground truth optical flow information. The computation of reliable ground truth data
for real image sequences within a reasonable time is almost impossible yielding invevitably the generation
of synthetic datasets. However, the huge diversity in fluid flows and varying particle image conditions in
experimental environments probably outmatch the data distribution which can be covered by artificially ren-
dered PIV images resulting in an inherent distribution mismatch between training and test time domain.
One potential solution to tackle this mismatch is the application of an unsupervised loss objective. In gen-
eral, unsupervised learning paradigms have a major advantage since the loss objective is purely based on
geometric penalty terms and hence, no ground-truth is required. As a consequence, unsupervised networks
can be trained directly on real experimental data and therefore, might remedy the need of a general synthetic
dataset while boosting the inference capability of a deep learning model such that the neural method can
deal with arbitrary challenging real-world experimental data.
First, Zhang and Piggott (2020) exploited the unsupervised loss formulation of Meister et al. (2017) and
extended their unsupervised learning strategy to PIV application using a LiteFlowNet network design. Their
loss consists of a photometric loss between two consecutive image frames, a consistency loss in bidirec-
tional flow estimates, and a spatial smoothness loss. It is demonstrated that this method achieves competi-
tive results compared to classical PIV algorithms and supervised architectures. However, a comprehensive
application to various real-world experimental data is still missing. Therefore, we study the effectiveness of
unsupervised learning paradigms in the context of RAFT-PIV and introduce an unsupervised RAFT model
denoted URAFT-PIV.

2 Method
The baseline model of our approach is RAFT-PIV introduced in Lagemann et al. (2021). Similar to the orig-
inal architecture, RAFT-PIV extracts per-pixel features, computes a 4 level multi-scale correlation volume
for all pairs of pixels, and iteratively updates a flow field using a convolutional gated recurrent unit. Details
can be found in Teed and Deng (2020). Compared to other optical flow networks, it is unique in the sense
that it operates at a single resolution using a large number of lightweight, recurrent update operators.

Given a pair of grayscale particle images, I1,I2, optical flow estimation requires to predict a dense
displacement field (f1, f2) mapping each pixel of I1 to its corresponding coordinates in I2. RAFT mainly
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Figure 1: Schematic visualization of URAFT-PIV and its main components: A shared feature encoder (I)
extracts per-pixel features from both input images. Based on the All-Pairs correlation (II) a 4D correlation
volume is computed and subsequently stacked to form a correlation pyramid (III) by pooling the last two
dimensions from level to level. The context encoder (IV) sharing the topology of the feature encoder com-
putes a context map of the first image frame. The convolutional GRU (V) takes context map and correlation
volume as input and recurrently updates the optical flow estimation. The loss objective of URAFT-PIV com-
prises a photometric, forward/backward consistent, and smoothness oriented penalty term. The photometric
loss penalizes the photometric difference between the initial and the subsequent image which is warped ac-
cording to the local flow prediction. An individual forward and backward flow is estimated by reversing the
order of the input images. The consistency loss penalizes differences between forward and backward flow.
Finally, a smoothness penalty term is applied to forward and backward flow separately.

consists of three stages, a feature extracting block, the computation of a full correlation volume between
all pairs, and iterative updates based on a convolutional Gated Recurrent Unit (Conv GRU). A schematic
visualization of URAFT-PIV can be found in Fig. 1. Furthermore, we introduced a cost volume normaliza-
tion and waive the spatial downsampling within the feature extraction block. This allows a state-of-the-art
performance while showing a strong generalization ability in direct real world applications.

To achieve an unsupervised learning scheme, we apply a loss objective which comprises photometric,
forward/backward consistent, and smoothness oriented penalty terms. The photometric loss encourages the
optical flow network to align image patterns by penalizing the photometric difference between the initial
and the subsequent image which is warped according to the local flow prediction. In fact, a bi-directional
photometric loss based on the generalized Charbonnier loss is used which simply can be achieved reversing
the order of the input data. Thus, an individual forward and backward flow is estimated. To account for
occluded pixels, which by definition do not have a valid counterpart in the other image, we compute an
occlusion mask based on a forward/backward flow check. The consistency loss penalizes differences be-
tween forward and backward flow, again applying a generalized formulation of the Charbonnier loss to the
difference between forward and backward flow. To address the aperture problem, e.g., motion estimation of
regions with insufficient image structure as present in sections in-between particles, we apply an edge-aware



first-order accurate smoothness function to forward and backward flow. Extensive hyperparameter studies
are performed to identify proper weights for the specific objective penalty terms. Furthermore, the loss of
each optical flow iteration is weighted exponentially forming the final sequence loss. The sequence loss
reads

L =
N

∑
i=1

γ
N−i (Li
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)
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where Li
photo,L
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i
smooth denote the photometric, forward/backward consistent, and smoothness ori-

ented penalty term of the iteration i and γ is the exponential weight. Similar to Teed and Deng (2020), we
choose γ = 0.8. The evaluation metric is the Averaged Endpoint Error (AEE) representing the Euclidean
distance between the final estimated (es) of the N-th iteration and ground truth (gt) optical flow of the test
case being averaged over all pixels and reads

AEE = ‖fes,N− fgt‖1. (2)

The computational graph of URAFT-PIV is implemented in the open source framework PyTorch (Paszke
et al. (2017)). During training, we apply an Adam-Optimizer (Kingma and Ba (2014)) starting at an initial
learning rate ε0 = 0.0001. Furthermore, the learning rate is reduced by a factor of five once the evaluation
metrics stopped improving for 15 consecutive epochs. The minimum learning rate is set to εmin = 10−8. All
computations are run on multiple GPU nodes simultaneously each equipped with four nvidia A100.

We compare the test results of URAFT-PIV to our state-of-the-art inhouse code PascalPIV. To allow
particle shifts greater than half the interrogation window size, the image evaluation uses a multi-grid ap-
proach with integer window shift to get an initial displacement field. Then, the displacement field is refined
using an iterative predictor-corrector scheme with subpixel accurate image deformation according to the
procedure described in Astarita and Cardone (2005). The initial displacement is interpolated for each pixel
of the image using a third-order B-Spline interpolation. Both images are deformed by half the displacement
to get a second-order accurate estimate of the displacement field. The image interpolation uses Lanczos
resampling , i.e., Lanczos windowed cardinal sine interpolation, incorporating the neighboring 8× 8px2.
An integral velocity predictor is used to ensure convergence of the iterative scheme (Schrijer and Scarano
(2008)). Hence, the predictor is the weighted average of the per-pixel displacement over the interrogation
window. The corrector is determined by evaluating the cross-correlation function between both exposures
with a 3-point Gaussian peak estimator (Raffel et al. (2018)). The initial window size for the multi-grid
evaluation is 128× 128px2 and the window size used for the iterative PIV evaluation is 32× 32px2 with
75% overlap. The windows of the iterative PIV evaluation are weighted by a Gaussian window with σ= 0.4.
Between the iterations, outliers in the vector field are detected using a normalized median test and are re-
placed by interpolated values. A total of three multi-grid steps and five steps of the iterative evaluation are
performed.

3 Results
In this section, we highlight the performance of URAFT-PIV based on two learning tasks representing
different image and flow conditions. During the first task, we trained the network on a synthetic particle
image dataset consisting of five categories which was introduced in Cai et al. (2019b). While this data is
interesting and serves as a benchmark, we note that experimental images barely achieve this idealised quality
in realistic PIV experiments. As a result, inference runs of networks trained on this dataset hardly predict
correct displacements for real-world measurements, likely due to the strong mismatch between training
and test time distribution. To study the performance using images like those obtained in many real-world
applications, we trained our network of the second learning task on a more realistic dataset introduced in
Lagemann et al. (2021) and compare inference results of URAFT-PIV on synthetic and experimental PIV
images to neural PIV processing competitors and our cross-correlation based algorithm PascalPIV.

3.1 Learning task I: Idealised PIV database
The networks were trained on synthetic particle image datasets consisting of five categories representing
well-known and realistic flow cases: (1) Direct numerical simulations (DNS) of isotropic turbulence; (2)



flows along a backward facing step; (3) two-dimensional flows past a cylinder; (4) DNS of a turbulent chan-
nel flow; and (5) simulations of a sea surface flow driven by a Surface-Quasi-Geostrophic (SQG) model.
This data is from a public database and is used to benchmark neural PIV processing methods. In total, the
resource contains 15,050 particle image pairs with corresponding ground truth flow fields and is divided into
12,000 training and 3,050 test images across all flow categories. Further characteristics include a very high
particle density, a maximum particle displacement of±10px, and particle peak intensities ranging from 200
to 255 counts within an 8-bit grayscale resembling images in perfect experimental conditions. Details can
be found in Cai et al. (2019b).

Table 1 illustrates inference results on the test dataset of learning task I for various neural network and
cross-correlation based PIV processing methods. In the context of unsupervised learning, URAFT-PIV can
outperform its LiteFlowNet based competitor in all test cases and achieves a slightly higher error compared
to the supervised PIV-LiteFlowNet-en proving the effectiveness of this learning paradigma. However, it
cannot match the performance of its supervised counterpart RAFT32-PIV, most likely due the simple but
yet effective supervised loss objective which is based on the l1-norm between ground truth and optical
flow estimation. In contrast, the unsupervised loss of URAFT-PIV is entirely based on geometric penalty
terms including a photometric, forward/backward consistency and smoothness oriented loss. We note that
networks solely trained on photometric differences tend to predict highly inconsistent displacement fields
which are mainly characterized by local extrema in the neighborhood of image patterns while regions of
less visual image texture do not contribute to the optical flow estimation. Considering the fact that optical
flow estimators aim at matching extracted image features between subsequent images rather than learning
the most probable, physical displacement which in fact is not possible, a single photometric loss will not
necessarily converge to the physically correct minimum. In this light, PIV images pose an even greater chal-
lenge on unsuspervised optical flow networks since they contain many, but tiny and almost identical image
features - the particles - and hence, provide similar image patterns within the local neighborhood impeding
the prediction of the physical correct displacement.

From a high-level perspective, smoothness oriented losses target this ambiguity since they penalize the
prediction of strong gradients and encourage colinearity of neighboring flows to achieve a more effective
regularization. However, this also means that displacement fields characterized by physically correct, strong
gradients are usually underestimated resulting in higher error values. To illustrate this drawback, Fig. 2
compares the ground-truth and predictions of supervised and unsupervised networks for two flow fields side-
by-side. Especially in gradient dominated flows, URAFT-PIV under-/overestimates the local displacement
compared to its supervised counterpart since the unsupervised loss objective encourages the network to
regularize the optical flow. As a result, the endpoint error of URAFT-PIV is one order of magnitude higher

Methods Back-step Cylinder JHTDB
Channel

DNS
turbulence SQG

WIDIM [1] 3.4 8.3 8.4 30.4 45.7
HS Optical Flow [1] 4.5 7.0 6.9 52.5 15.6
PIVNetS-noRef [2] {13.9} {19.4} {24.7} {52.5} {52.5}

PIV-NetS [2] {5.9} { 7.2} {15.5} {28.2} {29.4}
PIV-LiteFlowNet [1] {5.6} {8.3} {10.4} {19.6} {20.0}

PIV-LiteFlowNet-en [1] {3.3} {4.9} {7.5} {12.2} {12.6}
RAFT32-PIV [4] {0.4} {1.8} {1.1} {2.8} {2.1}

UnLiteFlowNet-PIV [3] 10.1 7.8 9.6 13.5 19.7
URAFT-PIV (present) 6.5 6.6 8.1 12.5 13.2

Table 1: Averaged Endpoint Error (AEE) for all test cases of the synthetic PIV database introduced in Cai
et al. (2019b) of learning task I. URAFT-PIV outperforms its unsupervised competitor in all test cases and
achieves a similar performance compared to a supervised LiteFlowNet based network (PIV-LiteFlowNet-
en). Its supervised counterpart RAFT32-PIV still achieves the lowest endpoint error by quite a margin. The
error unit is set to pixel per 100 pixels for easier comparison. Values in brackets correspond to supervised
networks. References: [1] Cai et al. (2019a), [2] Cai et al. (2019b); [3] Zhang and Piggott (2020); [4]
Lagemann et al. (2021)



compared to RAFT32-PIV, but still achieves a higher accuracy than UnLiteFlow-PIV which additionally
shows strong prediction noise. In contrast, if the underlying displacement field is more smooth, the endpoint
error decreases significantly. These findings are in line with literature (Jonschkowski et al. (2020)) and
suggest that the loss functions currently used might be a limiting factor for the performance of unsupervised
optical flow estimation. Current state-of-the-art unsupervised loss objectives are useful, but by far not as
effective as supervising the network based on a ground-truth, i.e., more sophisticated loss objective can
significantly boost the accuracy of unsupervised optical flow estimation.

Figure 2: Optical flow prediction of different network architectures and absolute error between ground
truth flow and network predictions. Each image depicts two individual flow fields characterized by medium
and strong gradients. The first two rows illustrate the displacement and error distribution of the horizontal
direction while the last two rows show estimates for the vertical axis. Especially in flow fields dominated
by strong gradients (right half), URAFT-PIV under-/overestimates the local displacement compared to its
supervised counterpart since the unsupervised loss objective encourages the network to regularize the optical
flow. However, URAFT-PIV still achieves a higher accuracies compared to UnLiteFlowNet-PIV and a lower
prediction noise.



3.2 Learning task II: Realistic synthetic and experimental PIV images
While the data above are interesting and useful, we note that it is almost impossible to obtain images of
this quality in practical applications since PIV setups are very sensitive to external and internal sources of
noise, e.g., reflections on side walls or surfaces, light refraction at glass surfaces, slight misalignments in the
setup, or density gradients as present in supersonic flows. To study the performance using images like those
obtained in many real-world applications, an additional database with an increased particle displacement up
to ±24px, a reduced particle density and signal-to-noise-ratio (SNR), an increased variance of the particle
diameter, and camera noise was used to train the networks of learning task II. Details of this dataset can be
found in Lagemann et al. (2021).

First, we study the performance of URAFT-PIV in evaluating synthetic images based on a DNS of a
laminar and a fully turbulent boundary layer. Results are depicted in Fig. 3 illustrating the displacement
prediction of URAFT-PIV and its supervised counterpart alongside comparisons of displacement profiles
at different positions. In case of a laminar boundary layer, barely any differences become visible between
RAFT32-PIV and URAFT-PIV. Compared to the ground-truth, however, local flow feature appear to be
smoothed and less sharp. We assume that this is directly related to the fact that the particle images of learning
task II comprise significantly less particles compared to learning task I and consequently, less information
of the underlying flow can be evaluated while more regions with low texture occur. The displacement profile
confirms these findings highlighting that the RAFT inspired approaches and our cross-correlation algorithm
closely match the ground-truth. In contrast, UnLiteFlowNet-PIV shows some slight deviations and a more
noisy distribution similar to previous findings.
Test runs on a turbulent boundary layer confirm these results. Overall, one notices that RAFT32-PIV fol-
lows the ground-truth most accurately only deviating slightly in regions of local extrema. The unsupervised
URAFT-PIV similarly matches the overall trend of the ground-truth, but cannot reach the accuracy of its
supervised counterpart. However, it still matches the performance of our cross-correlation based method
and proves its effectiveness in realistic particle and flow conditions.

In our final test case, we apply our URAFT-PIV model trained on the dataset of Lagemann et al. (2021)
to real-world experimental PIV data. This test case consists of experimental PIV measurements dealing with
a turbulent wavy channel flow as shown in Rubbert et al. (2019). Together with flow field predictions of
unsupervised PIV networks and our RAFT models, we analyze the images using our in-house code. Gen-
erally, Fig. 4 evidences that both RAFT-PIV approaches - supervised and unsupervised - perform likewise
state-of-the-art cross-correlation based PIV methods and hence, can serve as direct substitute. However, we
noted that the prediction results based on URAFT-PIV show some spurious estimations in the area of high
displacements (≈ 12px). This is potentially based on the unsupervised loss formulation which might not be
suitable for high displacements since similar patterns also occur for UnLiteFlowNet-PIV, but further analysis
is required. Moreover, it is noteworthy that URAFT-PIV clearly reduces the prediction noise due to its re-
current nature compared to its LiteFlowNet based competitor. Please note that our RAFT based approaches
do not involve any post-processing steps but nevertheless achieve at least an equal noise level compared
to gold-standard PIV algorithms. For instance, PascalPIV performs a spatial multigrid cross-correlation
scheme in a first step before computing the local displacement field of the final interrogation window in
25 iteration steps. Prior to every iteration step, several validation criteria are applied to detect outliers and
spurious values are replaced using a Lanczos interpolation scheme. Thus, a smooth displacement field is
finally achieved. In contrast, the RAFT model resembles a single-shot approach which solely operates on
a fixed input window without taking further neighboring information into account. Considering this key
difference, the low noise level of RAFT-PIV is quite astonishing and further proves for the first time that
unsupervised learning is a viable alternative when processing arbitrary real-world PIV images. Especially
the possibility of training respectively fine-tuning existing networks on real-world experimental data states
a key advantage for unsupervised learning tasks. However, detailed studies on new loss objectives and their
corresponding effect on the accuracy are necessary.

4 Conclusions
We studied URAFT-PIV, an unsupervised deep neural network architecture for optical flow estimation in
PIV applications. URAFT-PIV achieves a new state-of-the-art accuracy on a public PIV database for un-
supervised learning and performs likewise supervised LiteFlowNet based PIV networks. URAFT-PIV also
performs well under more challenging flow field and image conditions such as low particle density and



Figure 3: Comparison of displacement fields and profiles for a laminar and turbulent boundary layer.
In case of a laminar boundary layer, RAFT based networks and PascalPIV match the ground-truth well.
UnLiteFlowNet-PIV follows the overall trend, but predicts noisy results. The turbulent case reveals some
smoothing behaviour of our RAFT approaches, but still match the ground-truth very accurately as does the
traditional PIV algorithm. Similar to the laminar flow field, UnLiteFlowNet-PIV can roughly predict the
ground-truth distribution but shows significant noise.



Figure 4: Visual comparison of RAFT-PIV models with state-of-the-art PIV algorithms as well as existing
PIV networks. The left column represents the results of all available methods w.r.t. the horizontal optical
flow component and the right column depicts the predictions of the displacement in the vertical direction.
RAFT32-PIV and URAFT-PIV perform likewise with our high-performance code PascalPIV while signif-
icantly increasing the spatial resolution of the displacement field. Further note that these neural methods
match the noise level of PascalPIV without interpolating spurious displacement vectors using neighboring
data points and hence, resemble single-shot methods.



changing light conditions that are important for many real-world applications. Our tests show that URAFT-
PIV accurately predicts displacements while significantly reducing the noise level, most likely due to its
recurrent nature. We also noticed that our unsupervised model under-/overestimates the local displacement
in regions dominated by strong gradients since the unsupervised loss objective encourages the network to
regularize the optical flow. These findings suggest that the loss functions currently used might be a limiting
factor for the performance of unsupervised optical flow estimation. Current state-of-the-art unsupervised
loss objectives are useful, but by far not as effective as supervising the network based on a ground-truth
meaning that more sophisticated loss objective can significantly boost the accuracy of unsupervised optical
flow estimation. Applying URAFT-PIV in an out-of-the-box fashion to experimental PIV data demonstrates
its generalization capabilities and its ability to significantly improve the spatial resolution while otherwise
matching state-of-the-art PIV algorithms. Future work will incorporate further studies targeting the devel-
opment of more suitable penalty terms.
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